
 Teradata Tools and Utilities
Access Module

Reference

Release 13.00.00
B035-2425-088A

August 2008

The product or products described in this book are licensed products of Teradata Corporation or its affiliates.

Teradata, BYNET, DBC/1012, DecisionCast, DecisionFlow, DecisionPoint, Eye logo design, InfoWise, Meta Warehouse, MyCommerce,
SeeChain, SeeCommerce, SeeRisk, Teradata Decision Experts, Teradata Source Experts, WebAnalyst, and You’ve Never Seen Your Business Like
This Before are trademarks or registered trademarks of Teradata Corporation or its affiliates.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

BakBone and NetVault are trademarks or registered trademarks of BakBone Software, Inc.

EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.

GoldenGate is a trademark of GoldenGate Software, Inc.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, RACF, Tivoli, z/OS, and z/VM are registered trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI and Engenio are registered trademarks of LSI Corporation.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of Microsoft Corporation in the United
States and other countries.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.

QLogic and SANbox trademarks or registered trademarks of QLogic Corporation.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

SPARC is a registered trademarks of SPARC International, Inc.

Sun Microsystems, Solaris, Sun, and Sun Java are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries.

Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or its affiliates in the United States
and other countries.

Unicode is a collective membership mark and a service mark of Unicode, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The information contained in this document may contain references or cross-references to features, functions, products, or services that are
not announced or available in your country. Such references do not imply that Teradata Corporation intends to announce such features,
functions, products, or services in your country. Please consult your local Teradata Corporation representative for those features, functions,
products, or services available in your country.

Information contained in this document may contain technical inaccuracies or typographical errors. Information may be changed or updated
without notice. Teradata Corporation may also make improvements or changes in the products or services described in this information at any
time without notice.

To maintain the quality of our products and services, we would like your comments on the accuracy, clarity, organization, and value of this
document. Please e-mail: teradata-books@lists.teradata.com

Any comments or materials (collectively referred to as “Feedback”) sent to Teradata Corporation will be deemed non-confidential. Teradata
Corporation will have no obligation of any kind with respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without limitation on a royalty-free basis. Further, Teradata
Corporation will be free to use any ideas, concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever, including
developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 1999-2008 by Teradata Corporation. All Rights Reserved.

mailto:teradata-books@lists.teradata.com

Preface

Purpose

Teradata® Tools and Utilities is a group of products designed to work with Teradata Database.
This reference details how to use the access modules that link the Teradata Tools and Utilities
to external data sources and destination storage devices.

For information about other third-party access modules, refer to the third-party vendor
documentation.

Audience

This book is intended for use by:

• Systems programmers

• Application programmers

• Systems administrators

Supported Releases

This book supports the following releases:

• Teradata Database 13.00.00

• Teradata Tools and Utilities 13.00.00

• Data Connector 13.00.00

• Named Pipes Access Module 13.00.00

• OLE DB Access Module 13.00.00

• WebSphere MQ Access Module 13.00.00

• Teradata Access Module for JMS 13.00.00

Each chapter contains support information that is specific to each access module; however, for
the most current version information, do the following:

1 Go to http://www.info.teradata.com.

2 Under Online Publications, click General Search.

3 Type 3119 in the Publication Product ID box.

4 Under Sort By, select Date.

5 Click Search.
Teradata Tools and Utilities Access Module Reference 3

www.info.teradata.com

Preface
Prerequisites
6 Open the version of the Teradata Tools and Utilities xx.xx.xx Supported Versions
spreadsheet associated with this release.

The spreadsheet includes supported Teradata Database versions, platforms, and product
release numbers.

Prerequisites

The following prerequisite knowledge is required for this product:

• Familiarity with computer technology, database management systems, and utilities that
load and retrieve data.

• Familiarity with SQL and the Teradata Database.

Changes to This Book

The following changes were made to this book in support of the current release. Changes are
marked with change bars. For a complete list of changes to the product, see the Teradata Tools
and Utilities Release Definition associated with this release.

Date/Release Description

August 2008
Teradata Tools and
Utilities 13.00.00

• Updated version numbers for all products.

• Named Pipes Access Module: removed support for MP-RAS.

• OLE DB Access Module:

• Added support of Teradata Parallel Transporter (PT). See “Table
1: Commands for Teradata Utilities” on page HIDDEN and
“Overview” on page 21.

• Added support for duplicate rows (multiset tables). See “Step 1 -
Select a Data Source and Target” on page 24.

• Added support for the PERIOD data type. See Table 2 on page 40

• WebSphere MQ Access Module:

• Added a limitation regarding multi-volume checkpoint files. See
“Checkpoint Processing” on page 89.

• Updated a JCL example. See “MVS JCL Requirements” on page 90.

• Added 64-bit HP-UX as a supported operating system.

• Removed support for MP-RAS.

• Teradata Access Module for JMS:

• Added support for Teradata Parallel Transporter (PT).
4 Teradata Tools and Utilities Access Module Reference

Preface
Additional Information
Additional Information

Additional information that supports this product and Teradata Tools and Utilities is available
at the web sites listed in the table that follows. In the table, mmyx represents the publication
date of a manual, where mm is the month, y is the last digit of the year, and x is an internal
publication code. Match the mmy of a related publication to the date on the cover of this book.
This ensures that the publication selected supports the same release.

Type of Information Description Access to Information

Release overview

Late information

Use the Release Definition for the following
information:

• Overview of all of the products in the
release

• Information received too late to be
included in the manuals

• Operating systems and Teradata
Database versions that are certified to
work with each product

• Version numbers of each product and
the documentation for each product

• Information about available training
and the support center

1 Go to http://www.info.teradata.com.

2 Under Online Publications, click General Search
3 In the Publication Product ID box, type 2029.

4 Click Search.

5 Select the appropriate Release Definition from
the search results.
Teradata Tools and Utilities Access Module Reference 5

www.info.teradata.com

Preface
Additional Information
Additional product
information

Use the Teradata Information Products
Publishing Library site to view or download
specific manuals that supply related or
additional information to this manual.

1 Go to http://www.info.teradata.com.

2 Under the Online Publications subcategory,
Browse by Category, click Data Warehousing.

3 Do one of the following:

• For a list of Teradata Tools and Utilities
documents, click Teradata Tools and Utilities,
and then select an item under Releases or
Products.

• Select a link to any of the data warehousing
publications categories listed.

Specific books related to access modules are as
follows:

• Basic Teradata Query Reference
B035-2414-mmyx

• Teradata FastExport Reference
B035-2410-mmyx

• Teradata FastLoad Reference
B035-2411-mmyx

• Teradata MultiLoad Reference
B035-2409-mmyx

• Teradata Parallel Data Pump Reference
B035-3021-mmyx

• Teradata Parallel Transporter Reference
B035-2436-mmyx

• Teradata Tools and Utilities Access Module
Programmer Guide
B035-2424-mmyx

CD-ROM images Access a link to a downloadable CD-ROM
image of all customer documentation for
this release. Customers are authorized to
create CD-ROMs for their use from this
image.

1 Go to http://www.info.teradata.com/.

2 Under the Online Publications subcategory,
Browse by Category, click Data Warehousing.

3 Click CD-ROM List and Images.

4 Follow the ordering instructions.

Ordering
information for
manuals

Use the Teradata Information Products
Publishing Library site to order printed
versions of manuals.

1 Go to http://www.info.teradata.com/.

2 Under Print & CD Publications, click How to
Order.

3 Follow the ordering instructions.

Type of Information Description Access to Information
6 Teradata Tools and Utilities Access Module Reference

www.info.teradata.com
http://www.info.teradata.com/
http://www.info.teradata.com/

Preface
Additional Information
General information
about Teradata

The Teradata home page provides links to
numerous sources of information about
Teradata. Links include:

• Executive reports, case studies of
customer experiences with Teradata,
and thought leadership

• Technical information, solutions, and
expert advice

• Press releases, mentions, and media
resources

1 Go to Teradata.com.

2 Select a link.

Type of Information Description Access to Information
Teradata Tools and Utilities Access Module Reference 7

http://www.teradata.com

Preface
Additional Information
8 Teradata Tools and Utilities Access Module Reference

Table of Contents

Preface. .3

Purpose .3

Audience .3

Supported Releases .3

Prerequisites .4

Changes to This Book .4

Additional Information .5

Chapter 1:
Introduction . 17

Overview . 17

Supported Access Modules . 18

Supported Teradata Utilities . 18

Access Module Calls. 19

Client Utility Commands . 19

Data Connector API . 20

Version Identification. 20

Error Messages . 20

Session Character Sets . 20

Chapter 2:
Teradata OLE DB Access Module . 21

Overview . 21

About Load Operations . 22

About Export Operations . 22

About Operating Modes . 23

Operating Requirements . 23

System Prerequisites . 23

Loading and Exporting with OleLoad. 24

Step 1 - Select a Data Source and Target . 24
Teradata Tools and Utilities Access Module Reference 9

Table of Contents
Step 2 - Specify Advanced Settings [optional] .29

Step 3 - Launch a Script .31

Loading and Exporting at the Command Prompt. .32

About the Access Module Initialization String .32

Starting an Access Module Export Job Without Teradata OleLoad33

Starting an Access Module Load Job from a Teradata Utility .35

Restoring Default Selections .39

Access Module Functions. .40

Data Type Mapping .40

VARCHAR Constraints. .42

Character Set Support .43

Returned Data Format. .44

Date and Time Data Types .44

Checkpoints and Restarts .45

Job Files. .45

Improving Performance .50

Database Factors .50

Access Module Factors .50

Troubleshooting .52

Attributes Missing .52

Informix Not Available .52

Kanji Cannot be Loaded with BTEQ .52

Multi-Code Pages .52

Server Data Type is Always Set to Unicode .52

Inaccessible Data After Errors. .53

Unexpected Exceptions .53

Chapter 3:
Named Pipes Access Module. .55

Supported Operating Systems .55

Supported Teradata Utilities .56

Access Module Names .56

Data Flow. .57

With Load and Unload Utilities .58

With Teradata Parallel Transporter Infrastructure. .59

Using Teradata Named Pipes Access Module .60

With Client Load and Unload Utilities .60

For Windows .62

Restarting a Job .62
10 Teradata Tools and Utilities Access Module Reference

Table of Contents
With Client Load and Unload Utilities . 62

With Teradata Parallel Transporter . 63

Operational Considerations . 63

Fallback Data File Space Requirements . 64

Deleting the Fallback Data File . 64

Fallback Level Restriction . 64

Deleting the Log File . 65

Open Pipes Restriction . 65

Teradata Parallel Transporter Restrictions . 65

Named Pipes Access Module Log File. 65

Name and Location . 65

Format. 66

Messages . 66

WIN32 Named Pipes API . 74

Initialization String . 75

Function . 75

Syntax . 76

Specifying Directory Name on Windows . 77

Chapter 4:
Teradata WebSphere MQ
Access Module . 79

Supported Operating Systems . 79

Installation . 79

Access Module Name . 80

Features . 81

Standard Output Files . 82

Data Flow. 82

Initialization String . 83

Syntax . 84

Checkpoint Processing . 89

Repeatability of Messages . 90

MVS JCL Requirements . 90

Chapter 5:
Teradata Access Module for JMS. 93

Supported Platforms and Teradata Utilities . 93
Teradata Tools and Utilities Access Module Reference 11

Table of Contents
Access Module Names .94

Data Flow. .94

Importing Data. .95

Exporting with Teradata Export Utilities. .96

Exporting from an ODBC-Compliant Data Source (Using Teradata PT)97

Messaging Models .98

Interfaces .100

Interface with a JMS Provider. .100

Interface with the Data Connector .101

Initialization Strings .102

Syntax .102

Session Character Sets .107

Checkpoint Processing .109

Repeatability of Messages .109

Code Sample .109

Messages. .110

Appendix A:
How to Read Syntax Diagrams .113

Syntax Diagram Conventions .113

Strings .115

Multiple Legitimate Phrases .117

Sample Syntax Diagram. .118

Diagram Identifier .118

Appendix B:
Creating Schema Files .119

Define a Schema File. .119

Glossary .123

Index .127
12 Teradata Tools and Utilities Access Module Reference

List of Figures

Figure 1: Data Connector API Linkage . 18

Figure 2: Load Operation Data Flow. 22

Figure 3: Export Operation Data Flow . 23

Figure 4: Data Flow Between Named Pipes and Load/Unload Utilities 58

Figure 5: Data Flow Between Teradata Named Pipes and Teradata Parallel Transporter . . . 59

Figure 6: Importing Data through WebSphere MQ with Load and Unload Utilities 83

Figure 7: JMS Importing to Teradata Database . 96

Figure 8: Exporting with Teradata Export Utilities . 97

Figure 9: Exporting from ODBC-Compliant Data Sources . 98

Figure 10: Point-to-Point Messaging Model . 98

Figure 11: Publish-Subscribe Messaging Model. 99

Figure 12: Interface Components . 101
Teradata Tools and Utilities Access Module Reference 13

List of Figures
14 Teradata Tools and Utilities Access Module Reference

List of Tables

Table 1: Access Module Commands for Teradata Tools and Utilities 19

Table 2: Mapping OLE DB Data Type to Teradata Database Data Types 40

Table 3: Teradata Utilities Supported by the Named Pipes Access Module 56

Table 4: AXSMOD Name Specifications for Teradata Named Pipes Access Module 57

Table 5: Teradata Named Pipes Access Module Error Messages . 66

Table 6: Initialization Syntax . 76

Table 7: AXSMOD Name Specification for Teradata WebSphere MQ Access Module 80

Table 8: Teradata Utilities Supported by the WebSphere MQ Access Module 81

Table 9: Initialization Syntax . 84

Table 10: Required DDNAME Parameters. 90

Table 11: Optional DDNAME Parameters . 90

Table 12: Platform and Utility Support for Teradata Access Module for JMS 93

Table 13: AXSMOD Name Specifications . 94

Table 14: PIDMMain’s Opts Parameter Values . 102

Table 15: Export Syntax . 104

Table 16: Character Set Mapping . 108

Table 17: Error Messages . 110

Table 18: Schema File Formats . 119

Table 19: Coln Statement Parameters . 120

Table 20: Data Formats and Descriptions. 121
Teradata Tools and Utilities Access Module Reference 15

List of Tables
16 Teradata Tools and Utilities Access Module Reference

CHAPTER 1

Introduction

This chapter contains the following topics about how the Teradata access modules work with
Teradata Database:

• Overview

• Supported Access Modules

• Supported Teradata Utilities

• Data Connector API

• Version Identification

• Error Messages

• Session Character Sets

Overview

Access modules are dynamically linked software components that provide input and output
interfaces to different types of external data storage devices, OLE DB data sources, and
message queuing software. Access modules import data from various data sources and return
the data to a Teradata utility, which then stores the data in the data warehouse. Access modules
are dynamically linked to one or more client utilities by the Teradata Data Connector
Application Programming Interface (API).

• Read (import) data flows from access modules to the Teradata Data Connector API. The
Data Connector API expects, but does not require, data in blocks that consist of one or
more logical records.

• Write (export) data flows from the Teradata Data Connector API to access modules. In
most cases, the Data Connector API provides data in blocks consisting of one or more
logical records.

Note: Access modules are distinctly different from INMOD and OUTMOD routines.

Figure 1 depicts the relationship between various access modules and the Teradata Data
Connector API.
Teradata Tools and Utilities Access Module Reference 17

Chapter 1: Introduction
Overview
Figure 1: Data Connector API Linkage

Supported Access Modules

Teradata Database supports the following access modules:

• Chapter 2: “Teradata OLE DB Access Module”

• Chapter 3: “Named Pipes Access Module”

• Chapter 4: “Teradata WebSphere MQ Access Module”

• Chapter 5: “Teradata Access Module for JMS”

Supported Teradata Utilities

Teradata access modules work on many operating systems and with the following client load
and export utilities:

• BTEQ

• Teradata FastExport

• Teradata FastLoad

• Teradata MultiLoad

Client
Utility

Client
Utility

IBM Websphere
MQ Series

OLE
DBProvider

OLE
DBProvider

Tape Storage
Device

Teradata
OLE DB
Access
Module

Customer
Access
Module

Teradata
Access
Module
For JMS

JMS Provider

Data Connector

Statically Linked Data Stream

Dynamically Linked Data Stream 2424C001

Teradata Websphere
MQ Access Module
18 Teradata Tools and Utilities Access Module Reference

Chapter 1: Introduction
Overview
• Teradata Parallel Transporter (Teradata PT)

• Teradata TPump

For more information, see the individual access module chapters.

Access Module Calls

Each Teradata client utility invokes access module calls differently. However, all utilities
include the following:

• AXSMOD keyword.

• Access module name, which is the file name of the dynamically loadable module providing
the access module software.

• Access module initialization string, which is an optional list of operational parameters
specified for the access module.

Initialization strings are specified and delimited according to the requirements of the
Teradata client utility. The contents of the string are determined according to the
requirements of the specified access module.

To specify an access module in your Teradata utility job script, do the following:

1 Use the syntax for the AXSMOD command or command option as described in the
reference documentation for the Teradata utility.

2 Use the syntax for the access module initialization string described in the “Initialization
String” subsection of each access module chapter in this reference.

Client Utility Commands

Table 1 lists the client utility commands for specifying an access module.

Table 1: Access Module Commands for Teradata Tools and Utilities

Client Utility Command Description

BTEQ EXPORT

IMPORT

See the descriptions of the EXPORT and IMPORT
commands in the Basic Teradata Query Reference.

FastExport EXPORT

IMPORT

See the descriptions of the EXPORT and IMPORT
commands in the Teradata FastExport Reference.

FastLoad AXSMOD See the descriptions of the AXSMOD command in the
Teradata FastLoad Reference.

MultiLoad IMPORT See the descriptions of the IMPORT command in the
Teradata MultiLoad Reference.

Teradata PT <AccessModuleName> See the descriptions of the AccessModuleName attribute
in the Teradata Parallel Transporter Reference.

TPump AXSMOD

IMPORT

See the descriptions of the AXSMOD and IMPORT
commands in the Teradata Parallel Data Pump Reference.
Teradata Tools and Utilities Access Module Reference 19

Chapter 1: Introduction
Data Connector API
Data Connector API

The Data Connector API is the software layer between a client utility and an access module. It
is responsible for establishing, maintaining, and monitoring that connection. It accomplishes
this by being statically linked to the client modules and dynamically linked to the needed
access module. See Figure 1. If you have a Teradata Parallel Transporter version of an access
module, the term Data Connector throughout this book refers to the Teradata Parallel
Transporter DataConnector operator.

Specifying an access module in a Teradata client utility job script causes the following actions
at runtime:

1 The client utility passes the access module name and initialization information to the Data
Connector API.

2 The Data Connector API connects and initializes the specified access module.

Version Identification

All Teradata access modules use the Identification function for version information. This
function is requested as the second parameter (OptParms) in the main function called
PIDMMain(). This main function is called by the Data Connector. The Data Connector
displays this information in its log file and is available to the client utility to record in its log
file.

For the Teradata OLE DB Access Module, product information can be found by accessing
Start>Control Panel>Add or Remove Programs, or in the About menu in the dialog box.

Error Messages

All error return codes documented in this book are errors generated by a specific access
module. For Data Connector return codes, refer to the most recent version of the Teradata
Messages manual.

Session Character Sets

All Teradata access modules can use session character sets.

• Workstation - For any workstation access module to run with BTEQ or TPump using
UTF-16 session character set, the access module must accept UTF-16 as the attribute value
of attribute CHARSET_NAME.

• Mainframe - For any mainframe access module to run with BTEQ or TPump using the
UTF-8 session character set, the access module must accept UTF-8 as the attribute value of
attribute CHARSET_NAME.
20 Teradata Tools and Utilities Access Module Reference

CHAPTER 2

Teradata OLE DB Access Module

Topics in this chapter include:

• Overview

• Operating Requirements

• Loading and Exporting with OleLoad

• Loading and Exporting at the Command Prompt

• Restoring Default Selections

• About the Access Module Initialization String

• Access Module Functions

• Improving Performance

• Troubleshooting

Overview

Teradata OLE DB Access Module is a dynamic link library (DLL) that acts as an interface
between Teradata load and export utilities (Teradata FastLoad, Teradata FastExport, Teradata
MultiLoad, TPump, Teradata Parallel Transporter [PT], and BTEQ) and data sources for
which an OLE DB provider is available. The access module quickly moves data between a OLE
DB data sources and Teradata Database without requiring intermediate storage.

The access module can be used to view, edit, and re-run access module job (.amj) files, or to
perform a quick, one-time copy (to create a new table in Teradata Database with data from an
OLE DB data source) or a quick, one-time import from an OLE DB data source to Teradata
Database.

The Teradata OLE DB Access Module offers the following options to move data:

• Data source -> OLE DB provider -> Teradata OLE DB Access Module -> Teradata load
utility -> Teradata Database

• Teradata Database -> Teradata export utility -> Teradata OLE DB Access Module -> OLE
DB provider -> data source

• Teradata Database -> Teradata PT -> Teradata Database

Teradata OLE DB Access Module creates a new table during load operations if no target table
already exists, and adds (imports) to existing tables. The exception is when Teradata FastLoad
is used for imports, in which case the load operation only works on an empty table. In other
words, a load operation that uses FastLoad cannot load to existing tables.
Teradata Tools and Utilities Access Module Reference 21

Chapter 2: Teradata OLE DB Access Module
Overview
You can use Teradata OLE DB Access Module to accomplish the following processes:

• Use the access module graphical user interface (GUI):

a Open the GUI for Teradata OLE DB Access Module (nicknamed Teradata OleLoad),
and select a data source and destination.

b Save the job as an .amj file.

c Select a Teradata utility to transfer (load or export) the data, generate a script, and run
the job.

For more information, see “Loading and Exporting with OleLoad” on page 24.

• Run the access module from a Teradata load and export utility at the command prompt:

a In a Teradata utility, write a script that references Teradata OLE DB Access Module and
a previously saved .amj file.

b Run the script.

For more information, see “Loading and Exporting at the Command Prompt” on page 32.

About Load Operations

Potential data sources for Teradata OLE DB Access Module load operations include flat files,
spreadsheets, and databases. Teradata OLE DB Access Module retrieves data using an OLE DB
provider, then forwards the data to a Teradata utility that loads data into the target Teradata
Database, as shown in Figure 2.

Figure 2: Load Operation Data Flow

About Export Operations

Potential targets for Teradata OLE DB Access Module export operations include flat files,
spreadsheets, and databases. Teradata OLE DB Access Module uses a Teradata utility to export
data from Teradata Database, then forwards the data to an OLE DB provider that loads or
copies data to the target file or database, as shown in Figure 3.

Teradata
Database

2425B015

OLE DB Provider,
such as:

Teradata
OLE DB
Access
Module

Teradata
Utilities

Data
Source

CONNX
Connect for ADO
Active Directory
Provider
SQL Server
OpenAccess
OLE DB SDK
22 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Operating Requirements
Figure 3: Export Operation Data Flow

About Operating Modes

Teradata OLE DB Access Module can be run in two modes: through a GUI called Teradata
OleLoad, and through a command prompt. Both modes enable data movement with Teradata
load and export utilities, but the access module via the command prompt provides limited
functionality.

Operating Requirements

Teradata OLE DB Access Module runs on the Windows 2000, XP, Server 2003, and Vista
operating systems. For the most current information about the operating systems supported
by Teradata OLE DB Access Module, see Supported Releases in the Preface.

System Prerequisites

Teradata OLE DB Access Module requires the following:

• The Windows version of a Teradata utility (BTEQ, Teradata FastExport, Teradata
FastLoad, Teradata MultiLoad, Teradata PT, or TPump) to transport data

• ODBC Driver for Teradata

• An OLE DB provider

The installation of Teradata OLE DB Access Module includes the following Microsoft data
access components (MDAC) and OLE DB providers:

• Microsoft OLE DB Provider for SQL Server

• Microsoft OLE DB Provider for Oracle

• Microsoft OLE DB Provider for Microsoft Jet (to access data from Access, Paradox,
dBASE, Excel, FoxPro, text, and more)

• Microsoft OLE DB Provider for ODBC Driver (to access data traditionally accessed
using ODBC)

Note: For more information about OLE DB providers, consult OLE DB Provider for Teradata
Installation and User Guide, the Microsoft Web site, or the SQL Summit Web site.

2425B016

Target
Database

or File

Teradata
OLE DB
Access
Module

Teradata
Database

Teradata
Utilities

OLE DB Provider,
such as:

CONNX
Connect for ADO
Active Directory
Provider
SQL Server
OpenAccess
OLE DB SDK
Teradata Tools and Utilities Access Module Reference 23

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
Loading and Exporting with OleLoad

To move (load or export) data using the OleLoad GUI of Teradata OLE DB Access Module, do
the following:

• Step 1 - Select a Data Source and Target

• Step 2 - Specify Advanced Settings [optional]

• Step 3 - Launch a Script

Step 1 - Select a Data Source and Target

To specify a data source and target

1 From the desktop, click Start>Programs>Teradata Client>OleLoad to open Teradata
OleLoad dialog box.

2 [Optional] Click File>Open to populate the window with parameters from a previously
saved .amj file.

3 Select a data source from the Select a source list.

The list contains names of all of the available OLE DB data sources and the Teradata
Database. After a data source is selected, you can click Connection Info to view system
information about a selected data source.
24 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
• Loading to Teradata Database - Selecting a data source opens the Microsoft Data Link
Properties dialog box. Use this dialog box to specify the information necessary to
connect the source.

Note: Duplicate rows (multiset tables) are supported.

• If the data source is a text file with multi-lined strings and carriage returns (which
are features not supported by Teradata utilities) select Microsoft Jet 4.0 OLE DB
Provider. For information about how to set up the schema.ini file that is needed for
this type of transfer, see “Define a Schema File” on page 119.

• Select the Blank password check box if a system administrator allows specific users
to log on without a password; clear the check box if an administrator provides the
password for accessing the database.

• Transfers that involve text files need to have the Text property file specifically
designated. To do this from the Data Link Properties dialog box, click All, highlight
Extended Properties, and click Edit Value. In the Edit Property Value dialog box,
type the word Text, and click OK to return to Data Link Properties.
Teradata Tools and Utilities Access Module Reference 25

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
• Click the All tab to verify that the lists of Name and Value contain an entry for
Extended Properties and Text.

Note: If a Microsoft Data Link Error message occurs, stating that Failed Properties:
Persist Security Info (NOT SUPPORTED), ignore the message by clicking OK.

Note: For more help, click Help in the Data Link Properties dialog box.

• Exporting from Teradata Database - Select Teradata Database as the data source to
open the Teradata Connection Information dialog box. Use this dialog box to specify the
information necessary to connect to Teradata Database.

Note: An OLE DB data source cannot be specified as both the source and the
destination.

Selecting Teradata Database as the data source or the destination for a load or export
operation opens the Teradata Connection Information dialog box so connection
information to the Teradata Database can be configured.

Note: Although it is possible to export data from one Teradata Database to another
Teradata Database, the performance is such that this specific operation is not
recommended. Consider using an alternate data source for export operations into a
Teradata Database, such as changing the operation to an import operation by selecting
Microsoft OLE DB Provider for ODBC Drivers or OLE DB Provider for Teradata as the
data source.
26 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
The following fields are available in this dialog box:

• Teradata host - Enter the host name for the Teradata Database. The value entered
must have a COP entry in the hosts file or in domain name services (DNS).

• User id - Enter the user logon id for the connection.

• Password - Enter the password associated with the specified user id.

• Allow saving password - Select to save the password to the .amj file and prevent
being prompted again for this information when connecting to Teradata Database.

Caution: If this check box is selected, the .amj file might allow unauthorized access because it will
contain password information.

• Target database - Enter the name of the Teradata Database.

4 The left pane of the Teradata OleLoad dialog box displays a hierarchy of the items in the
selected data source, if such hierarchies are available. Select one of the following buttons
(which are below the left pane) to identify the location of the data needed for the load
operation:

• Selection - Displays the hierarchy of the data source in the left pane. Select the data
needed for the operation.

This button is only available if the data source supports the TABLE schema rowset.

• Name - Type the name of a data source in the left pane.

• Command - Type an SQL query in the left pane to retrieve data from the selected data
source, then manually update the Table Name text box in the Advanced Settings dialog
box. (With the other options, the text box is automatically updated.)

Depending on the source, performance might be improved if the command limits the
columns that will be returned. For example, instead of using the following command
to select only the columns CustomerID and CompanyName,

SELECT * FROM "NORTHWIND"."DBO".CUSTOMERS"

Instead, use:

SELECT CustomerID, CompanyName FROM "NORTHWIND"."DBO".CUSTOMERS"

The Command button is only available if the data source supports SQL commands. The
button is unavailable if Teradata Database is the data source.

5 From the Select a destination list, do one of the following to select a target:
Teradata Tools and Utilities Access Module Reference 27

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
The list contains the names of all of the available OLE DB providers and the Teradata
Database. After a destination is selected, you can click Connection Info to view system
information about a selected destination.

• Loading to Teradata Database - Select Teradata Database, which opens the Teradata
Connection Information dialog box. Use this dialog box to specify the information
necessary to connect to Teradata Database.

• Exporting from Teradata Database - Select an OLE DB provider, which opens the
Microsoft Data Link Properties dialog box. Use this dialog box to specify the
information necessary to connect to the OLE DB provider.

After a destination is selected, you can click Connection Info to view system information
about a selected destination.

Note: An OLE DB data provider must not be specified as both the source and the
destination.

6 In the right pane, select the columns that contain the data needed for the operation.

The data in the selected columns will be transferred to the target system that is identified
in the Select a destination box when the job is launched.

7 Proceed with Step 2 - Specify Advanced Settings [optional].
28 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
Step 2 - Specify Advanced Settings [optional]

To set load options, edit a table name, or specify log tables

If these options do not need to be modified, proceed with Step 3 - Launch a Script.

1 [Optional] To set up bulk loading options, edit a table name, or change the location of the
log tables involved in the operation, click Settings to open the Advanced Settings dialog
box.

The following items are available in this dialog box:

• Bulk loading options - When updating tables, disable either or both of these options to
optimize performance. The options are available only when a data source supports the
option.

• Index updates required - If this option is cleared, the OLE DB provider is not
required to update indexes based on inserts or changes to a row set. This will
require indexes to be re-created after changes are made to a row set.

• Referential integrity check - If this option is cleared, the OLE DB provider is not
required to check the referential integrity constraints or to enforce changes made to
a row set.
Teradata Tools and Utilities Access Module Reference 29

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
• Table name - Enter or change the name of the destination table. By default, the quoted
and qualified table name is displayed; however, the double quotes must be removed for
data providers, such as Oracle, that do not support double quotes. In other words, the
table name must be quoted and qualified as required by the destination source.

If you enter a name for a table that does not exist, a new table will be created.

• Location of log tables - Specify the location of the restart log tables for the operation.
The name of this database gets included in the LOGTABLE command of Teradata
FastExport scripts created by Teradata OLE DB Access Module.

• User’s default database - Teradata FastExport scripts search for the log table in the
default database that is defined for the user name by the LOGON command.

• Source database - Restart log tables are located in the same database as the tables
being exported.

• Other database - Specify a database name other than the default or source database.

• Session character set - Specify the character set for the current session used for scripts
and data transfer.

Because the session character set affects the validity of strings allowed for Teradata
logon and password, a change in character sets will disconnect a Teradata session.

For arbitrary Unicode strings to be correctly transferred, the following must occur:

• In Session Character Set, select UTF8 (a Teradata session character set).

• Ensure that the source (for a load operation) or the destination (for an export
operation) properly handles Unicode.

• Perform the necessary configuration of the data source or OLE DB Provider.

During an export, character data is received from a export utility (that is, FastExport or
BTEQ) in the Teradata session character set encoding. The character data is then
converted using the DBTYPE_WSTR (UTF16) data type and passed to the OLE DB
Provider that is specified in the Select a destination box.

For additional information character sets, see “Character Set Support” on page 43.

• Checkpoint interval - Specify a checkpoint interval. This value is used in the
CHECKPOINT specification in load scripts generated for Teradata FastLoad, Teradata
MultiLoad, and TPump jobs. The field is enabled for load jobs only.

If a value is entered in the Checkpoint interval field, system performance might be
enhanced if values are also added to the Rows per Fetch and Buffer size boxes, and if
the Enable scroll backwards option is selected. For more information about how to set
these fields, see “Access Module Factors” on page 50.

• Rows per Fetch - Enter the number of rows returned for Teradata MultiLoad jobs.
Increasing the number of rows might improve efficiency.

• Buffer size - Enter a number to represent the size of the buffer for a TPump job.
Increasing the buffer size might improve efficiency.

• Enable scroll backwards - If this option is selected, restarts begin at the most recent
checkpoint; however, this selection might slow performance. If this option is left blank,
jobs restart from the beginning of the script.

2 Close the Advanced Settings dialog box, and proceed with Step 3 - Launch a Script.
30 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting with OleLoad
Step 3 - Launch a Script

Scripts create tables and provide the commands necessary to run a job.

To launch a script

1 [Optional] Select File>Change Default Folder to change the location of the default folder
for saved .amj files. The default location is C:\ My Documents.

2 After selecting a destination and at least one column of data in a source table, click
File>Save As to save the file.

Caution: Failure to save the job will result in a failed operation. (You can tell a job is saved if the .amj file
name appears in the title bar of the dialog box.) Also, if you try select additional columns from
a table that was already used in a successful job, an error results unless you save the newly
selected columns as a new, separate .amj file.

You can save the .amj file anywhere you have write access, but it is recommended that all
.amj files be stored in a single location for easy access. The default storage location of the
.amj files is the local My Documents directory.

3 Click Launch, then click one of the utility options in the Launch submenu.

Selecting a utility option opens the Teradata OleLoad - <utility name> job script dialog box
(basically, a text editor), which displays a script generated in response to the selections in
the previous dialog box. Scripts are created as Unicode text, then converted to the session
character set specified in the Advanced Settings dialog box before being passed to the
Teradata utility.

4 Edit the script as needed to meet job requirements.

Note: Use Ctrl-C and Ctrl-V to copy and paste a job script to another application, if needed.

5 Click OK to run the job.

Note: Click Cancel in the progress dialog box to stop the job. The cancellation, terminates the
job without completing it. All modifications to the job script are lost.

Caution: For bulk load operations, the number of rows displayed in the progress dialog box might not
be the same as the number of rows returned to the utility if a restart occurs. In this case, the
progress dialog box might display a larger number of row retrievals than the number of rows
actually retrieved from the data source.
Teradata Tools and Utilities Access Module Reference 31

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting at the Command Prompt
Loading and Exporting at the Command Prompt

Data transfers are also possible using Teradata OLE DB Access Module from an active Teradata
load/export session without the Teradata OleLoad GUI. Following is an overview of this
process:

1 In a Teradata utility, create a job script that references Teradata OLE DB Access Module as
oledb_axsmod.dll.

If the initialization string of the script does not specify batch or noprompt, the Teradata
OLE DB AXSMOD dialog box will open when the script is run so you can supply the needed
information. (This dialog box is similar to the Teradata OleLoad GUI, but it has limited
functionality.)

For more information, see “Access Module Calls” on page 19 and “Client Utility
Commands” on page 19.

2 Run the script from the utility.

About the Access Module Initialization String

When referencing the operating mode in the initialization string, do not use batch or
prompt; only noprompt and the blank value are valid. (This does not apply to using Teradata
PT.)

Syntax

where:

Option Description

noprompt • Removes the prompt for data source specifications.

• Shows a progress dialog box during load or export operations.

batch • Removes the prompt for data source specifications.

• Prevents the progress dialog box from being displayed during load
operations.

• Allows Teradata OLE DB Access Module to operate without user
interaction.

"" • Prompts for data source specifications by opening the Teradata OLE DB
AXSMOD dialog box.

• Shows a progress dialog box during load or export operations.

2425A017

noprompt

batch

""
32 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting at the Command Prompt
Access Module Commands

The initialization string for Teradata OLE DB Access Module consists of a single specification
of the operating mode for the access module; however, to launch Teradata OLE DB Access
Module, the initialization string for BTEQ and the load and export utilities must be empty
(""). (If the initialization string contains prompt, the script fails.) For the specific commands
and command options for each supported Teradata utility, see “Access Module Calls” on
page 19.

Starting an Access Module Export Job Without Teradata OleLoad

To successfully export data using Teradata OLE DB Access Module without the Teradata
OleLoad GUI (that is, using a Teradata utility), a job script must reference a previously saved
access module job that designated Teradata Database as the data source in the Select a source
field of the OleLoad GUI.

Depending on the information designated in the job script, one of the following occurs:

• If batch or noprompt are specified in the access module initialization string, Teradata OLE
DB Access Module processes the job without interruption.

• If batch or noprompt are not specified in the access module initialization string, the
Teradata OLE DB Access Module dialog box opens, and displays information from the
specified .amj file as default job parameters. Modify the job parameters as needed, then
click Launch to run the job.

Using BTEQ

To export from Teradata Database using BTEQ

1 Select Start >Programs >Teradata Client >BTEQ to open Teradata BTEQ from the Windows
desktop.

2 For the EXPORT command, specify OLEDB_AXSMOD as the DLL for Teradata OLE DB
Access Module.

3 For the FILE parameter and operating specification, use one of the following, where an
.amj file is a previously saved access module job:

FILE Parameter Operating Specification Outcome

"<pathname>.amj" 'noprompt' Script runs if no errors exist. If errors exist, the
script fails.

"<pathname>.amj" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens so
you can run the script using the access
module.

"UNTITLED" 'noprompt' Script fails. Instead, specify an .amj file name
instead of UNTITLED.

"UNTITLED" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens.
Teradata Tools and Utilities Access Module Reference 33

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting at the Command Prompt
BTEQ Export Example

.LOGON bubbater/dbc,dbc ;
database bubba ;
.EXPORT indicdata file="C:\fexp.amj" AXSMOD OLEDB_AXSMOD 'noprompt';
SELECT col1, col2 from tst10k ;
.EXPORT reset
.LOGOFF;

Using FastExport

To export from Teradata Database using FastExport

1 Select Start >Programs >Teradata Client >FastExport to open Teradata FastExport from the
Windows desktop.

2 For the EXPORT command, specify OLEDB_AXSMOD as the DLL for Teradata OLE DB
Access Module.

3 For the .EXPORT OUTFILE and operating specification, use one of the following, where
an .amj file is a previously saved access module job:

FastExport Example

.LOGTABLE job_account_Log;
LOGON perform/test,test ;
DATABASE test2 ;
.BEGIN EXPORT SESSIONS 4 ;
SELECT name, salary FROM job_account ;
.EXPORT OUTFILE "Untitled" AXSMOD Oledb_Axsmod 'noprompt';
.END EXPORT ;
.LOGOFF ;

Using Teradata PT

To export data from Teradata Database using Teradata PT, ensure that the Teradata PT job
script uses the following specifications:

• TYPE definition as DATACONNECTOR CONSUMER

• The AccessModuleName attribute set as OLEDB_AXSMOD

• The FileName attribute set to the pathname of the .amj file

FILE Parameter Operating Specification Outcome

"<pathname>.amj" 'noprompt' Script runs if no errors exist. If errors exist, the
script fails.

"<pathname>.amj" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens so
you can run the script using the access
module.

"UNTITLED" 'noprompt' Script fails. Instead, specify an .amj file name
instead of UNTITLED.

"UNTITLED" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens.
34 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting at the Command Prompt
For information about exporting data from Teradata Database using Teradata PT, see
“Extracting Data” in the Teradata Parallel Transporter User Guide.

Starting an Access Module Load Job from a Teradata Utility

Access module load jobs can be initiated from the following Teradata Utilities:

• Using FastLoad

• Using MultiLoad

• Using TPump

• Using BTEQ

• Using Teradata PT

Using FastLoad

To load to Teradata Database using FastLoad

1 Select Start >Programs >Teradata Client >FastLoad to open Teradata FastLoad from the
Windows desktop.

2 Use the BEGIN LOADING command. Because Teradata OLE DB Access Module returns
data in a format that includes indicator bits, specify the INDICATORS option in the
FastLoad BEGIN LOADING command.

3 For the AXSMOD specification, use OLEDB_AXSMOD as the DLL for Teradata OLE DB
Access Module.

4 Use the DEFINE command to specify the fields to load.

5 Specify the one of the following for the file parameter and operating specification:

FastLoad Example

LOGON DELL2300/taste,taste ;
DATABASE test2 ;
CREATE TABLE "unittestmixtablefe1_29"

(colinteger INTEGER,
colsmallint SMALLINT,
Colbyteint SMALLINT);

FILE Parameter Operating Specification Outcome

"<pathname>.amj" "noprompt" Script runs if no errors exist. If errors exist, the
script fails.

"<pathname>.amj" "<blank>" Teradata OLE DB AXSMOD dialog box opens so
you can run the script using the access
module.

"UNTITLED" "noprompt" Script fails. Instead, specify an .amj file name
instead of UNTITLED.

"UNTITLED" "<blank>" Teradata OLE DB AXSMOD dialog box opens.
Teradata Tools and Utilities Access Module Reference 35

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting at the Command Prompt
BEGIN LOADING "unittestmixtablefe1_29"
ERRORFILES unittestmixtablefe1_29_errors1, unittestmixtablefe1_29_err

ors2
INDICATORS;

AXSMOD Oledb_Axsmod "noprompt";
DEFINE colinteger (INTEGER),

colsmallint (SMALLINT),
colbyteint (SMALLINT)FILE=Myfile.amj;

INSERT INTO "unittestmixtablefe1_29"(colinteger, colsmallint, and colbyt
eint)

VALUES (:colinteger, :colsmallint, :colbyteint);
END LOADING;
LOGOFF;

Using MultiLoad

To load to Teradata Database using MultiLoad

1 Select Start >Programs >Teradata Client >MultiLoad to open Teradata MultiLoad from your
Windows desktop.

2 Use the .LAYOUT command. Because Teradata OLE DB Access Module returns data in a
format that includes indicator bits, specify the INDICATORS option in the MultiLoad
.LAYOUT command.

3 For the AXSMOD specification, use OLEDB_AXSMOD as the DLL for Teradata OLE DB
Access Module.

4 Use the IMPORT command to specify the following:

MultiLoad Example

.LOGTABLE newtest.test1_LOG;

.LOGON perform/test,test;
DATABASE test ;
CREATE TABLE "test1"(col1 numeric(3,0));
.BEGIN IMPORT MLOAD TABLES "test1" CHECKPOINT 0;
.LAYOUT test1_layout INDICATORS;
.FIELD col1 * numeric(3,0);
.DML LABEL test1_label;
INSERT INTO "test1"(col1) VALUES (:col1);
.IMPORT INFILE "c:\oledb\test1.amj"

FILE Parameter Operating Specification Outcome

"<pathname>.amj" 'noprompt' Script runs if no errors exist. If errors exist, the
script fails.

"<pathname>.amj" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens so
you can run the script using the access
module.

"UNTITLED" 'noprompt' Script fails. Instead, specify an .amj file name
instead of UNTITLED.

"UNTITLED" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens.
36 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting at the Command Prompt
AXSMOD OLEDB_AXSMOD 'noprompt'
LAYOUT test1_layout
APPLY test1_label;

.END MLOAD;

.logoff;

Using TPump

To load to Teradata Database using TPump

1 Select Start >Programs >Teradata Client >TPump to open Teradata TPump from the
Windows desktop.

2 Use the .LAYOUT command. Because Teradata OLE DB Access Module returns data in a
format that includes indicator bits, specify the INDICATORS option in the TPump
.LAYOUT command.

3 For the AXSMOD specification, use OLEDB_AXSMOD as the DLL for Teradata OLE DB
Access Module.

4 Use the TPump IMPORT command to specify the following:

TPump Example

.LOGTABLE test.precision_log;
LOGON wuscaesc/tester,dbc;
DATABASE test ;
DROP TABLE "TestPrecision";
DROP TABLE "precision_err";
CREATE TABLE "TestPrecision"(

munie decimal(18,4));
.BEGIN LOAD SESSIONS 1

ERRORTABLE "precision_err"
NOMONITOR
ROBUST ON;

.LAYOUT precision_layout INDICATORS;

.FIELD munie * decimal(18,4);

.DML LABEL precision_label;
INSERT INTO "TestPrecision"(munie) VALUES(:munie);
.IMPORT INFILE "C:\WINNT\Profiles\Personal\sql_test08.amj"

AXSMOD OLEDB_AXSMOD 'noprompt'
LAYOUT precision_layout

FILE Parameter Operating Specification Outcome

"<pathname>.amj" 'noprompt' Script runs if no errors exist. If errors exist, the
script fails.

"<pathname>.amj" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens so
you can run the script using the access
module.

"UNTITLED" 'noprompt' Script fails. Instead, specify an .amj file name
instead of UNTITLED.

"UNTITLED" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens.
Teradata Tools and Utilities Access Module Reference 37

Chapter 2: Teradata OLE DB Access Module
Loading and Exporting at the Command Prompt
APPLY precision_label;
.END LOAD;
.LOGOFF;

Using BTEQ

To load to Teradata Database using BTEQ

1 Select Start >Programs >Teradata Client >BTEQ to open Teradata BTEQ from the Windows
desktop.

2 Use the IMPORT command to specify the following:

BTEQ Load Example

.LOGON bubbater/dbc,dbc;

.SET Session Charset "UTF8";
database bubba ;
drop table "Customers";
CREATE TABLE "Customers" (CustomerID CHAR(5) NOT NULL,

CompanyName VARCHAR(40) NOT NULL,
ContactName VARCHAR(30),
ContactTitle VARCHAR(30),
Address VARCHAR(60),
City VARCHAR(15),
Region VARCHAR(15),
PostalCode VARCHAR(10),
Country VARCHAR(15),
Phone VARCHAR(24),
Fax VARCHAR(24));

.IMPORT indicdata file="C:\mload.amj" AXSMOD OLEDB_AXSMOD 'noprompt';

.REPEAT *using (CustomerID CHAR(5),
CompanyName VARCHAR(40),
ContactName VARCHAR(30),
ContactTitle VARCHAR(30),
Address VARCHAR(60),
City VARCHAR(15),
Region VARCHAR(15),
PostalCode VARCHAR(10),
Country VARCHAR(15),
Phone VARCHAR(24),
Fax VARCHAR(24))

FILE Parameter Operating Specification Outcome

"<pathname>.amj" 'noprompt' Script runs if no errors exist. If errors exist, the
script fails.

"<pathname>.amj" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens so
you can run the script using the access
module.

"UNTITLED" 'noprompt' Script fails. Instead, specify an .amj file name
instead of UNTITLED..

"UNTITLED" ‘<blank>' Teradata OLE DB AXSMOD dialog box opens.
38 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Restoring Default Selections
INSERT INTO "Customers"(
CustomerID, CompanyName,
ContactName, ContactTitle,
Address, City,
Region, PostalCode,
Country, Phone,
Fax)

 VALUES(
:CustomerID, :CompanyName,
:ContactName, :ContactTitle,
:Address, :City,
:Region, :PostalCode,
:Country, :Phone,
:Fax);

.LOGOFF;

.QUIT;

Using Teradata PT

To load data from Teradata Database using Teradata PT, ensure that the Teradata PT job script
contains the following specifications:

• TYPE definition is DATACONNECTOR PRODUCER

• AccessModuleName attribute is OLEDB_AXSMOD

• FileName attribute is set to the pathname of the .amj file

For information about loading data from Teradata Database using Teradata PT, see “Loading
Data” in the Teradata Parallel Transporter User Guide.

Restoring Default Selections

When the Teradata OLE DB Access Module dialog box opens, it automatically displays
whatever information was last entered in the dialog box, even if the information was not
saved.

It can be helpful to restore the default selections, especially when the dialog box is exited with
connection information that cannot be restored.

To start OleLoad with all selections blank (default)

1 Click Start>Run and type OleLoad nosuchfile.amj.

The following message appears:

Could not open the requested file, "nosuchfile.amj", because
nosuchfile.amj was not found.

2 Click OK. The OleLoad GUI starts with blank fields.
Teradata Tools and Utilities Access Module Reference 39

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
To open a previously saved job

✔ Display previously saved .amj information in the Teradata OLE DB Access Module dialog
box (OleLoad) by doing one of the following:

• In Windows Explorer, open an .amj file from the local drive.

• Specify the file from the command line. For example, type: OleLoad
C:\<jobname>.amj.

Access Module Functions

The following functions are available in Teradata OLE DB Access Module:

• Data Type Mapping

• VARCHAR Constraints

• Character Set Support

• Returned Data Format

• Date and Time Data Types

• Checkpoints and Restarts

• Job Files

Data Type Mapping

OLE DB uses standard OLE and Windows data types. To describe a data type, an OLE DB type
indicator is used, which is a variable of the enumerated type DBTYPE. Teradata OLE DB
Access Module retrieves the C/C++ data type indicated by the OLE DB type indicator and
converts the data type to a Teradata Database data type. The Teradata Database data type is
based on the DBTYPE and the DBCOLUMNFLAGS values.

Data type mapping is required for transferring data from Teradata OLE DB providers to the
Teradata Database. Table 2 lists the mapping of OLE DB type indicators to Teradata Database
data types.

Table 2: Mapping OLE DB Data Type to Teradata Database Data Types

DBTYPE DBCOLUMNFLAG Teradata Type

DBTYPE_11 BYTE(n)*

DBTYPE_I2 SMALLINT

DBTYPE_I4 INTEGER

DBTYPE_I8 BIGINT

DBTYPE_UI1 SMALLINT

DBTYPE_UI2 INTEGER
40 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
DBTYPE_UI4 DECIMAL(10,0)

DBTYPE_UI8 BIGINT

DBTPYE_R4 FLOAT

DBTYPE_R8 FLOAT

DBTYPE_NUMERIC DECIMAL(p,s)*

DBTYPE_DECIMAL DECIMAL(p,s)*

DBTYPE_CY DECIMAL(18,4)

DBTYPE_BSTR VARCHAR(64000)

DBTYPE_IDISPATCH BYTE(n)

DBTYPE_ERROR DECIMAL(10,0)

DBTYPE_BOOL BYTEINT

DBTYPE_VARIANT Unsupported

DBTYPE_IUKNOWN BYTE(n)**

DBTYPE_GUID BYTE(n)**

DBTYPE_BYTES DBCOLUMNFLAGS_ISF
IXEDLENGTH

BYTE(n)**

DBTYPE_BYTES VARBYTE(n)**

DBTYPE_STR DBCOLUMNFLAGS_ISF
IXEDLENGTH

PERIOD(DATE)

DBTYPE_STR DBCOLUMNFLAGS_ISF
IXEDLENGTH

PERIOD(TIME(p))

DBTYPE_STR DBCOLUMNFLAGS_ISF
IXEDLENGTH

PERIOD(TIMESTAMP(p))

DBTYPE_STR DBCOLUMNFLAGS_ISF
IXEDLENGTH

CHAR(n)**

DBTYPE_STR VARCHAR(n)**

DBTYPE_WSTR DBCOLUMNFLAGS_ISF
IXEDLENGTH

CHAR(n)**

DBTYPE_WSTR VARCHAR(n)**

DBTYPE_UDT Unsupported

DBTYPE_DATE TIMESTAMP(p), DATE, & FLOAT***

DBTYPE_DBDATE DATE

Table 2: Mapping OLE DB Data Type to Teradata Database Data Types (continued)

DBTYPE DBCOLUMNFLAG Teradata Type
Teradata Tools and Utilities Access Module Reference 41

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
VARCHAR Constraints

By default, Teradata OLE DB Access Module uses the maximum VARCHAR data type
specification supported by Teradata Database: 64000 B. Data types like SQL Server “text” can
return a length that greatly exceeds the 64000 B maximum. When selecting columns of this
type, remember that:

• Rows with a total length exceeding the maximum are not loaded; long string data are not
truncated.

• After Teradata OLE DB Access Module returns all rows it can successfully return, in
response to the next request for rows the access module returns an error message
indicating the number of rows not loaded. This usually causes the job to fail.

When truncating long string data, use an SQL command to create the rowset to be loaded.
When using the SQL command, specify the SUBSTRING function in the select-item-list of the
SELECT command to truncate the data before it reaches Teradata OLE DB Access Module.

DBTYPE_DBTIMESTAMP TIMESTAMP(p), DATE, & FLOAT***

DBTYPE_ARRAY Unsupported

DBTYPE_BYREF Indicates the data points to the real data
value. For example, DBTYPE_I2 |
DBTYPE_BYREF means that the data
contains the address of a two-byte
integer. All supported types can be
referenced by DBTYPE_BYREF.

DBTYPE_VECTOR Unsupported

DBTYPE_RESERVED Unsupported

DBTYPE_NULL Unsupported

DBTYPE_EMPTY Unsupported

DBTYPE_DBTIME FLOAT

DBTYPE_FILETIME TIMESTAMP(p), DATE, & FLOAT***

DBTYPE_PROPVARIANT Unsupported

DBTYPE_HCHAPTER DECIMAL(10,0)

DBTYPE_VARNUMERIC VARCHAR(n)**

*DECIMAL(p,s) indicates Teradata data type DECIMAL with precision (p) and scale (s).
**n represents the number of bytes for BYTE(n) and VARBYTE(n), and the number of characters for
CHAR(n) and VARCHAR(n).
***All date and time data types are split into a Teradata DATE type for the date portion of the data
type, and a Teradata FLOAT for the time portion (in addition to being available as a Teradata
TIMESTAMP(p)).

Table 2: Mapping OLE DB Data Type to Teradata Database Data Types (continued)

DBTYPE DBCOLUMNFLAG Teradata Type
42 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
Character Set Support

The following session character sets are supported for transferring data:

• UTF-8: Preferred character set because it accommodates a superset of characters handled
by the other character sets.

• ASCII: Teradata OLE DB Access Module uses the code page of the system locale (also
called the system default ANSI code page) when using ASCII. Teradata’s ASCII character
set does not match Microsoft’s code page, so character conversions produce minor
differences. If an exact match is required, use the UTF-8 session character set.

Note: Previous versions of Teradata OLE DB Access Module used the ANSI-Latin1 (1252)
code page when the ASCII session character set was used, regardless of the system locale.

• KANJISJIS_0S: Teradata’s Kanji_SJIS character set does not exactly match Microsoft’s
Japanese Shift-JIS code page, so character conversions produce minor differences. If an
exact match is required, use the UTF8 session character set.

• LATIN1252_0A: All UNICODE character strings transferred to the Teradata Database are
converted to ANSI-Latin 1 by Teradata OLE DB Access Module before being passed to a
Teradata utility.

ANSI-Latin1 (1252) Code Page

When the ASCII character set is specified, Teradata OLE DB Access Module uses the code page
of the system locale. If the code page of the system locale is one in which some characters
consume more than one byte, Teradata OLE DB Access Module can return longer character
fields during execution of a load job than if the 1252 code page were used. Teradata OleLoad
generates load job scripts that account for this change.

Update any existing scripts. For example, a system locale of "Chinese (Taiwan)" has a code
page of 950, which has a maximum character size of 2 B. If existing FastLoad job scripts using
the ASCII session character set to load character data from Teradata OLE DB Access Module,
update the scripts to account for the fact that there may be 2 B per character. For example,
double the value of <n> in CHAR(<n>) and VARCHAR(<n>) fields located in the CREATE
TABLE and DEFINE statements included in the FastLoad job scripts.

Session Character Sets

All Teradata utilities (except for BTEQ) notify Teradata OLE DB Access Module about the
session character set they use. For BTEQ, the access module uses the session character set
specified in the Advanced Setting dialog box of the Teradata OleLoad GUI.

To set session character sets, specify the character set name as follows:

• For jobs launched from the Teradata OleLoad GUI, specify the session character set in the
Advanced Settings dialog box.

• For jobs launched without the Teradata OleLoad GUI, specify a character set name as
follows:

• Teradata FastExport, Teradata MultiLoad, or Teradata TPump - Specify the
-c character-set-name parameter at runtime in the command line to set the session
character set name.
Teradata Tools and Utilities Access Module Reference 43

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
• BTEQ or Teradata FastLoad - Specify the .SET SESSION CHARSET command in a
script.

• Teradata PT - Specify the USING CHAR(ACTER) SET charset-id phrase in the
Teradata PT job script.

Returned Data Format

Teradata OLE DB Access Module provides data to and receives data from Teradata utilities in
pmIDFBin1Plus format with indicator mode bits. In this format, each row consists of the
following:

• A 2-byte record-length indicator specifying the length of everything in the row except the
record-length indicator

• An indicator bit for each field specifying whether the field has data or is NULL

• The actual row data

• A new-line character signifying the end-of-record

When creating job scripts, be sure to specify the following:

• INDICATORS in the BEGIN LOADING command of a FastLoad job script

• MODE INDICATOR in the .EXPORT command of a FastExport job script

• INDICATORS in the .LAYOUT command of a MultiLoad job script

• INDICATORS in the .LAYOUT command of a TPump job script

• INDICDATA in the .IMPORT command of a BTEQ load job script

• INDICDATA in the .EXPORT command of the BTEQ export job script

• 'Yes' in the IndicatorMode attribute value and 'Formatted' in the Format attribute value of
the DATACONNECTOR operator definition of a Teradata PT job script.

Date and Time Data Types

Two columns are synthesized as follows:

• The date portion can be copied to a DATE, and the column name is shown as
ColumnName_DATE.

• The time portion can be copied to a FLOAT, and the column name is shown as
ColumnName_TIME.

A number can be appended to the new column names as needed to create unique names. For
example, if ColumnName_DATE already exists in the table, ColumnName_DATE_2 can be
used as the new column name. You can copy the date and time to a TIMESTAMP data type.

If the data source already contains a column named ColumnName_DATE or
ColumnName_TIME, Teradata OLE DB Access Module adds a number to the new column
names to maintain unique names for the new columns; for example, ColumnName_DATE_2.
44 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
Checkpoints and Restarts

Checkpoint and restart operations are not supported for export jobs (unloading data);
however, checkpoints and restarts are supported for load jobs (loading data). Restarts for load
operations are only supported when the following conditions are met:

• The data being loaded does not change between the initial load attempt and the restart.

Check the source data to make sure it has not changed between the initial load attempt and
the restart. Teradata OLE DB Access Module does not check for changed data during the
restart operation. If the data has changed, the loaded data may not reflect the true contents
of the source table.

• To load data from the most recent checkpoint, the Enable scroll backwards option must be
selected on the Advanced Settings dialog box before the job starts.

The following can occur during checkpoint/restart operations:

• If a load process loses contact with the destination Teradata Database (for example, the
destination Teradata Database resets), Teradata OLE DB Access Module backs up to the
previous checkpoint location, and resumes retrieving and returning data from that
location when contact is restored (at the request of the load utility).

• If a load process terminates unexpectedly, manually restart the load job by reissuing the
job. In this case, the Teradata Database detects that a restart is in progress and (at the
request of the load utility) Teradata OLE DB Access Module skips forward to the previous
checkpoint location, and resumes retrieving and returning data from that location.

Caution: For bulk load operations, the number of rows displayed in the progress dialog box might not
be the same as the number of rows returned to the utility if a restart occurs. In this case, the
progress dialog box might display a larger number of row retrievals than the number of rows
actually retrieved from the data source.

Job Files

An access module job is a set of parameters defining OLE DB data source information to
Teradata OLE DB Access Module. Access module jobs include the following parameters:

• Data source details for both of the data sources supplying and receiving data

• Table name for the data source supplying data

• List of columns for the data source supplying data

Teradata OLE DB Access Module uses .amj files that include the name of the file containing
the information used by the access module when the job was executed; for example,
filename.amj. An .amj file that loads a table from Oracle might include such information as
the specific OLE DB provider to be used, the name of the Oracle database server containing
the table to be loaded, the user name and password to log on that server, and the name of the
table to be loaded.

Note: Teradata OLE DB Access Module does not use the convention of using the name of the
data source as the pathname for an operation.

Use the filename.amj name for the following:
Teradata Tools and Utilities Access Module Reference 45

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
• FILE = filename specification in the IMPORT command in a BTEQ load job script

• FILE = filename specification in the EXPORT command in a BTEQ export job script

• OUTFILE fileid specification in the .EXPORT command in a FastExport job script

• FILE = filename specification in the DEFINE command in a FastLoad job script

• INFILE filename specification in the IMPORT command in a MultiLoad or TPump job
script

• Value of the FileName attribute specification in the DATACONNECTOR operator
definition in a Teradata PT job script.

File Format

Teradata OLE DB Access Module creates .amj files, which are saved in an extensible markup
language (XML) based text format. You can use Teradata OleLoad to view, edit, and save
access module job files.

Note: Access module job files adhere to version 1.0 of the XML specification. Binary format
files created by earlier versions can be opened by Teradata OLE DB Access Module; however,
XML-based .amj files cannot be opened with the versions earlier than 02.02.00.

Some text is altered in an access module job file when the text contains illegal characters or
characters that already have assigned meaning in XML. Altered text is identical to the
unaltered text for all characters except for the following:

• Less-than symbol (<)

• Greater-than symbol (>)

• Equal sign (=)

• Ampersand (&)

• All other characters for which the UTF-16 encoding of the character is not in the range
[0x0020 - 0xd7ff] or in the range [0xe000 - 0xfffd]

Altered characters are replaced with an equal sign (=) followed by four hexidecimal digits
representing the UTF-16 encoded value of the character. For example, an ampersand is
replaced by =0026 because the UTF-16 encoding for an AMPERSAND is 0x0026.

Example

The following example, which explains the contents of an .amj file, assumes an understanding
of the XML specification and the format is subject to change without notice.

Files begin with an XML declaration specifying the XML version and character encoding used
and may have comments interspersed as permitted by the XML specification; these comments
are discarded when the file is processed.

Following the XML declaration is a processing instruction containing the version number of
the first version of Teradata OLE DB Access Module that handled the .amj file:

OLE_DB_AXSMOD_<FirstCompatibleVersion>

After this processing instruction is the root element, named OLE_DB_AXSMOD_Jobs, which
has one child element, named Job, which has four child elements: Source, Destination,
46 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
CharacterEncoding, and might contain CheckpointInterval, LargeDecimalSupport,
RowsPerFetch, BufferSize, and EnableScrollBackwards.

• Source - The Source element can contain:

• One child element named DataSourceParseName

• A DataSourceParseName element contains an altered parse name uniquely
identifying the selected OLE DB provider.

• One child element named DataSourceProperties

• A DataSourceProperties element contains the values of all properties needed to
initialize the provider, including provider-specific properties. It contains one child
PropertySet element for each property set supported by the provider.

• Each PropertySet element contains one child PropertySetId element followed by
one child Property element for each supported property in that property set.

• A PropertySetId element contains identification of a property set. For some
property sets, Teradata OLE DB Access Module associates a symbolic name for the
property set; for example, DBPROPSET_DBINIT. For these property sets, the
identification is the altered symbolic name. For other property sets (such as, many
provider-specific property sets) the identification is an altered textual
representation of the GUID identifying the property set; for example, {c200e360-
38c5-11ce-ae62-08002b2b79ef}.

• Each Property element contains one PropertyId element followed by one
PropertyType element followed by one PropertyValue element.

• A PropertyId element contains the identification of a property (within a property
set). For some properties, Teradata OLE DB Access Module associates a symbolic
name for the property; for example, DBPROP_INIT_TIMEOUT. For these
properties, the identification is the altered symbolic name. For other properties
(such as, many provider-specific properties), the identification is the altered textual
hexadecimal representation of the integer identifying the property; for example,
0x43.

A property's value may be included in one of two ways. The first method is used
when the property value can be converted to a string (VT_BSTR) and then back to
the original value using the features supplied by the COleVariant class (which is
part of the Microsoft Foundation Classes (MFC)). Otherwise, the second method is
used.

When the first method is used, a PropertyType element contains the data type
associated with the property and a PropertyValue element contains the altered
textual representation of the value for the property. For some PropertyType
elements, Teradata OLE DB Access Module knows a symbolic name for the data
type; for example, VT_I4. For these types, PropertyType contains the altered
symbolic name. For other data types, PropertyType contains the altered textual
hexadecimal representation of the type number; for example, 0x43.

When the second method is used, PropertyType contains "ARCHIVED" and the
PropertyValue element contains the altered byte pattern obtained in an archive by
Teradata Tools and Utilities Access Module Reference 47

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
dumping the property value to an archive (managed by an object of the MFC
CArchive class) using the COleVariant insertion (<<) operator.

Note: To learn more about OLE DB defined properties, see the OLE DB
Programmer's Reference at http://msdn.microsoft.com/library/. For documentation
of provider-specific properties, consult the documentation or supplier of the
relevant OLE DB provider.

• One child element named TableSelection or one child element named TableName or
one child element named TableCommand.

• The TableSelection element is present when a source table is selected from the tree
control. It contains one child element named Catalog, followed by one child
element named Schema, followed by one child element named Name.

• The Catalog element contains the altered name of the catalog of the table selected
by the user. The Schema element contains the altered name of the schema of the
table selected by the user. The Name element contains the altered name of the table
selected by the user.

When a source table is specified by name using the edit control, the Source
element has a child element named TableName containing the altered table name.

The TableCommand element is present when a source table has been specified by
command using the edit control, for example, a SQL SELECT... command.

Note: The precise manner in which the OLE DB provider uses catalog names, schema
names, table names, and commands is specific to the provider. Consult the
documentation or supplier of the relevant OLE DB provider for details relating to a
particular provider.

• One child element named LocationOfLogTables and one child element named
OtherDatabase:

• The contents of the LocationOfLogTables depends on which option you select in
the Location of log tables frame on the Teradata OleLoad - Advanced Settings dialog
box. If you select the User's default database option, then the LocationOfLogTables
element is zero. This option is enabled in the export job operation. If you select the
Source database option, then the LocationOfLogTables element is 1. If you select
the Other database option, then the LocationOfLogTables element is 2.

Note: The OtherDatabase element contains the altered string from the Other
database box in the Teradata OleLoad - Advanced Settings dialog box.

• One child element named Columns:

• The Columns element contains one child element named Column for each column
in the selected source table. Each Column element contains one empty child
element named Selected, if the column is selected. If the column is not selected, the
Selected child element is not present. Each Column element also contains one child
element named SourceName, followed by one child element named
DestinationName, followed by one child element named TypeName.

• A SourceName element contains the altered name of the source column. This is the
name that appears in the Src. Column Name column of the list of available columns
in OleLoad. When you click Teradata Database from the Select a source list, this
48 Teradata Tools and Utilities Access Module Reference

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/

Chapter 2: Teradata OLE DB Access Module
Access Module Functions
name is derived from the source Teradata Database by issuing a HELP COLUMN
command and removing trailing SPACE (" ") characters from the returned Column
Name value. When you select an OLE DB provider from the Select a source list,
this name is the name returned in the pwszName field of the DBCOLUMNINFO
structure by the IColumnsInfo::GetColumnInfo() method when applied to the
source table.

• A DestinationName element contains the altered destination column name. This is
the name that appears in the Dest. Column Name column of the list of available
columns in OleLoad. Often this name is the same as the source column name, but
it need not be the same. You can change the name using OleLoad.

• A TypeName element contains the altered Teradata data type name for the column.
This is the name that appearing in the Data Type column of the list of available
columns.

• Destination - The Destination element contains one child element named TableName,
and may contain one child element named DataSourceParseName, one child element
named DataSourceProperties, one child element named ReferentialIntegrityIsChecked,
and one child element named IndexUpdatesAreRequired.

• A TableName element that is a child of the Destination element contains the altered
name of the destination table. This is the name in the Table name box in the Edit the
table name frame of the Teradata OleLoad - Advanced Settings dialog box.

If you select the Referential integrity check check box in the Bulk Loading Options
frame of the Teradata OleLoad - Advanced Settings dialog box, the
ReferentialIntegrityIsChecked element is present. This element sets the
DBPROPVAL_BO_REFINTEGRITY bit in the DBPROP_ROW_BULKOPS property
in the DBPROPSET_ROWSET property set used to create the rowset for the
destination table. The ReferentialIntegrityIsChecked element serves as a hint to the
destination provider that referential integrity constraints do not need to be checked or
enforced for changes made through the rowset. This is effective only during exports to
a provider that supports DBPROPVAL_BO_REFINTEGRITY.

If you select the Index updates required check box in the Bulk Loading Options frame of
the Teradata OleLoad - Advanced Settings dialog box, the IndexUpdatesAreRequired
element is present. This element sets the DBPROPVAL_BO_NOINDEXUPDATE bit in
the DBPROP_ROW_BULKOPS property in the DBPROPSET_ROWSET property set
used to create the rowset for the destination table. The IndexUpdatesAreRequired
element serves as a hint to the destination provider that the provider is not required to
update indexes based on inserts or changes to the rowset. Any indexes need to be
recreated following changes made through the rowset.

• Character Encoding - The CharacterEncoding element contains the altered character set
name for this job.

• CheckpointInterval - The CheckpointInterval element contains the altered string from
the Checkpoint Interval box in the Teradata OleLoad - Advanced Settings dialog box when
you enter any integral value.
Teradata Tools and Utilities Access Module Reference 49

Chapter 2: Teradata OLE DB Access Module
Improving Performance
• LargeDecimalSupport - The LargeDecimalSupport element contains Supported and
NotSupported. If Supported, the access module can return DECIMAL values greater than
18 digits; otherwise the maximum returned DECIMAL values is 18 or less.

• RowsPerFetch - The RowsPerFetch element, if present, contains the value specified in the
Advanced Settings dialog box.

• BufferSize - The BufferSize element, if present, contains the value specified in the
Advanced Settings dialog box.

• EnableScrollBackwards - The EnableScrollBackwards element, if present, contains the
value specified in the Advanced Settings dialog box.

Improving Performance

Both database factors and access module factors can affect the performance of an access
module job.

Database Factors

When using the access module products , consider the following database factors, which
might improve performance:

• Use the fastest Teradata client load or export utility that meets the requirements. For
example, if a new (initially empty) table is being loaded, it is faster to use Teradata
FastLoad than TPump. See Appendix B of the Database Administration manual for
additional information about selecting the appropriate Teradata utility.

• Use the appropriate number of sessions to the Teradata Database. Using multiple sessions
in parallel can provide higher throughput.

• Use fast, dedicated networks to connect a data source and Teradata Database. Minimize
other traffic on the connections consuming bandwidth.

• Ensure that no other applications and services are running on your system while it is
running a load job.

Access Module Factors

In addition to database performance factors that might improve performance, consider the
following issues that are specific to Teradata OLE DB Access Module:

• If multiple OLE DB providers can access a particular data source, choose the fastest
provider. A list of OLE DB providers is available at
http://www.sqlsummit.com/oledbVen.htm.

• Look for bottlenecks in the load operation. Possible locations might be the OLE DB
provider on the source side or on the destination (Teradata) side of the transfer. When not
in batch mode, observe the statistics in the dialog box that is displayed during the load job
execution. Teradata OLE DB Access Module displays how many rows it retrieves from the
source OLE DB provider and how many rows it returns to the Teradata load software:
50 Teradata Tools and Utilities Access Module Reference

http://www.sqlsummit.com/oledbVen.htm

Chapter 2: Teradata OLE DB Access Module
Improving Performance
• If the “a” statistic is constantly a good deal higher that the “b” statistic, the data source
is supplying the data faster than the load software is requesting it, and thus the speed of
the load job is limited by the destination (Teradata Database).

• If the “a” statistic stays close to the “b” statistic then the data source is not able to
provide the data as fast as it can be loaded and thus the speed of the load job is limited
by the data source side of the transfer.

It might also be possible to improve performance by using batch mode to disable the
dialog box that displays the status and progress status of the transfer. This frees the
processing resources used to display and updates dialog box.

• If the data sources support SQL commands, use a SQL SELECT command that returns the
minimum amount of data to be loaded, that is, only the required columns and rows.

• In load jobs that transfer fixed-length text data (as in CHAR(n) data), if the text data only
contains characters that can be properly transferred using the ASCII session character set,
use the ASCII session character set instead of the UTF8 session character set. When the
UTF8 session character set is used, extra padding characters are added to the end of these
fields during the load transfer. These padding characters consume some of the bandwidth
available between the Teradata Database and the system running the Teradata client utility.
Another option for avoiding this padding is to CAST the columns to a variable-length test
data type (such as VARCHAR(n)).

• Run load jobs on a system with at least two CPUs to allow for the retrieval of the data from
the data source and the returning of the data to the Teradata Database. For best
performance, do these operations in parallel.

• If a value is entered in the Checkpoint interval field, performance might be enhanced if
values are also added to the Rows per fetch and Buffer size boxes, and the Enable scroll
backwards option is selected.

• If Rows per fetch is blank, the default is 10 jobs. Increasing the number too much
might prevent rows from being retrieved in parallel, which could decrease
performance. Consider limiting the number to one-third or less of the number of rows
than can fit into the internal buffer (Buffer Size) after deducting from the buffer
whatever space is consumed by holding rows between checkpoints when the
checkpoint/restart feature is enabled.

• If Buffer size is blank, the default is 128 KB. No less than the default is accepted. It is
recommended that the number be three times the rows specified in Rows per fetch;
however, if the number is too large, performance might drop because the chances
increase that data in the buffer will get paged out to disk, especially on systems with
low memory or when running other load task.

• If Enable scroll backwards is selected, restarts begin at the most recent checkpoint, but
the internal buffer (Buffer size) does not store data for restarts. Selecting this option
can cause problems because some data sources can consume all available memory,
which can result in job failure. Therefore, caution is recommended when in using this
option. If Checkpoint interval is selected while this option is blank, restarts can still
succeed if Buffer size is large enough to store the rows loaded between checkpoints.
Teradata Tools and Utilities Access Module Reference 51

Chapter 2: Teradata OLE DB Access Module
Troubleshooting
Troubleshooting

Attributes Missing

Problem: Some table attributes might not be propagated from the source table to the
destination table because only OLE DB-supported attributes are handled. Teradata OLE DB
Access Module lets you connect a Teradata utilities to arbitrary OLE DB providers. The focus
is on loading from an OLE DB-supported data source to Teradata Database and exporting
from Teradata Database to an OLE DB-supported data source. As such, only OLE DB-
supported attributes are handled.

Solution: To preserve Teradata-specific table attributes (such as the display format
information for date and time that can be attached to columns), edit the sample script created
by Teradata OleLoad to include the desired formatting for the date and time columns. The
default date and time formats in the sample load scripts are YYYY-MM-DD and 99:99:99.
These come from string entries number 78 and 40 in the resource-only .dll
(OLEDB_AXSMODenu.dll).

Informix Not Available

Problem: Tables in Informix cannot be selected.

Solution: The Informix OLE DB provider does not support quoted table names even though
it indicates to Teradata OLE DB Access Module that it must use quotes. Consequently, data
can be loaded from Informix only if the Command option is selected and the table name is
entered without quotes. The Command option is not available for FastExport, so data cannot
be exported from Teradata Database to Informix.

Kanji Cannot be Loaded with BTEQ

Problem: Kanji characters cannot be loaded if BTEQ is used with the access module.

Solution: Unlike other Teradata utilities, BTEQ cannot communicate to Teradata OLE DB
Access Module information about the session character set that is used to transfer data.
Instead, the ASCII default code page is used to transfer data, resulting in possibly inaccurate
data. Use an alternate Teradata utility.

Multi-Code Pages

Problem: Attempts fail when trying to load a table that contains columns that use multiple
codes.

Solution: Use the UTF8 session character set to transfer tables that use multiple code pages.

Server Data Type is Always Set to Unicode

Problem: The server data type of a character string is always set to Unicode even if
KANJSIJIS_OS is specified as the session character set.
52 Teradata Tools and Utilities Access Module Reference

Chapter 2: Teradata OLE DB Access Module
Troubleshooting
Solution: When creating load scripts, Teradata OLE DB Access Module assigns a character
data type for a destination table based on the session character set that is specified. If ASCII or
LATIN1252_0A is specified, then a LATIN character data type is assigned; otherwise, a
Unicode character data type is assigned. Scripts can be modified to use any supported
character data type.

Inaccessible Data After Errors

Problem: Access is locked to the portion of a table that was loaded before an error occurs.

Solution: When a FastLoad job halts due to an error during the loading phase, the job is put
into the paused state. In this state, the table that was being loaded and the two error tables are
locked and cannot be accessed. To unlock these tables, submit a FastLoad job that contains a
BEGIN LOADING command and an END LOADING command.

Note: After executing the END LOADING command, you will be able to access the tables, but

the original job cannot be restarted.

Unexpected Exceptions

Problem: Unexpected exceptions occur while using Teradata OLE DB Access Module.

Solution: It is possible to find diagnostic information for an unexpected exception using Dr.
Watson for Windows.

Note: This process is not supported by Teradata.
Teradata Tools and Utilities Access Module Reference 53

Chapter 2: Teradata OLE DB Access Module
Troubleshooting
54 Teradata Tools and Utilities Access Module Reference

CHAPTER 3

Named Pipes Access Module

Teradata Named Pipes Access Module provides an interprocess communication link between
a writer process, such as Teradata FastExport, and a reader process, such as Teradata FastLoad.
Topics include:

• Supported Operating Systems

• Supported Teradata Utilities

• Access Module Names

• Data Flow

• Using Teradata Named Pipes Access Module

• Restarting a Job

• Operational Considerations

• Named Pipes Access Module Log File

• Initialization String

Supported Operating Systems

Teradata Named Pipes Access Module runs on the following operating systems:

• Linux 32-bit and 64-bit, and Opteron 32-bit and 64-bit

• HP-UX 32-bit and 64-bit

• IBM® AIX 32-bit and 64-bit

• SUN® Solaris SPARC 32-bit and 64-bit

• SUN Solaris Opteron 32-bit and 64-bit

• Microsoft® Windows 2000, XP, Server 2003, and Vista

Note: Unless stated otherwise in this chapter, the term Windows means any Windows 2000/
XP/2003/Vista system.

For the most current information about supported operating systems, see Supported Releases
in the Preface.

Supported Teradata Utilities

Teradata Named Pipes Access Module can be used on a number of different operating systems.
The following table lists supported Teradata load and unload utilities by operating system.
Teradata Tools and Utilities Access Module Reference 55

Chapter 3: Named Pipes Access Module
Access Module Names
Access Module Names

Depending on your operating system, Teradata Named Pipes Access Module can be either a
shared library, a shared object, or a dynamic link library. To use Teradata Named Pipes Access
Module with a Teradata utility you must reference the file name in your job script. The
following table lists the Teradata Named Pipes Access Module name to use as the AXSMOD
name specification in your Teradata utility job script.

Table 3: Teradata Utilities Supported by the Named Pipes Access Module

Operating System

Teradata Named Pipes Access Module Operates with

BTEQ
Teradata
FastExport

Teradata
FastLoad

Teradata
MultiLoad

Teradata
TPump

Teradata
Parallel
Transporter

Linux 32-bit Yes Yes Yes Yes Yes Yes

UNIX HP-UX

32-bit Yes Yes Yes Yes Yes Yes

64-bit Yes Yes Yes Yes Yes Yes

IBM AIX
(32-bit and 64-bit)

Yes Yes Yes Yes Yes Yes

SUN Solaris 10
Opteron 32-bit

Yes Yes Yes Yes Yes No

SUN Solaris on SPARC 8, 9, and 10

32-bit Yes Yes Yes Yes Yes Yes

64-bit Yes Yes Yes Yes Yes Yes

Windows 2000 Yes Yes Yes Yes Yes Yes

XP
(32-bit and 64-bit)

Yes Yes Yes Yes Yes Yes

2003 Yes Yes Yes Yes Yes Yes

Vista Yes Yes Yes Yes Yes Yes

Table 4: AXSMOD Name Specifications for Teradata Named Pipes Access Module

Operating System Teradata Parallel Transporter Version Named Pipes Access Module

Linux Shared library file called
np_axsmod.so

Shared library file called
np_axsmod.so
56 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Data Flow
Data Flow

Pipes are bidirectional interprocess communication mechanisms on UNIX, Linux, Windows
2000/XP/2003 systems. They provide input and output file structures accessed by different
applications and processes on a first-in-first-out (FIFO) basis.

Using pipes, instead of disk or tape files, provides a substantial performance improvement for
data transfer operations between two complementary data extract and load utilities, such as
FastExport, FastLoad, and TPump. However, standard pipe mechanisms do not support
checkpoint and restart functions because FIFO file structures are not cached, leaving them no
way to revert to an earlier position after a system failure or restart. Teradata Named Pipes
Access Module caches pipe output data stream in a fallback data file that supports checkpoint
and restart functions and provides quick, easy recovery from the following:

• Restarts on the destination database

• Crashes on the system running the load utility

Note: Teradata Named Pipes Access Module does not support checkpoint or restart
operations on the source database.

You can use Teradata Named Pipes Access Module a variety of ways:

• On UNIX with client load and unload utilities with the following configurations:

• Named pipes

• Unnamed pipes and file descriptor devices

• Teradata Parallel Transporter

• On Windows 2000/XP/2003

UNIX HP-UX PA-RISC Shared library file called
np_axsmod.sl

Shared library file called
np_axsmod.sl

HP-UX IA64 Not Available Shared library file called
np_axsmod.so

IBM-AIX Shared object file called
np_axsmod.so

Shared object file called
np_axsmod.so

Solaris SPARC Shared object file called
np_axsmod.so

Shared object file called
np_axsmod.so

Solaris Opteron np_axsmod.so np_axsmod.so

Windows 2000/XP/2003 Dynamic link library file called
np_AXSMOD.dll

Dynamic link library file
called np_AXSMOD.dll

Table 4: AXSMOD Name Specifications for Teradata Named Pipes Access Module (continued)

Operating System Teradata Parallel Transporter Version Named Pipes Access Module
Teradata Tools and Utilities Access Module Reference 57

Chapter 3: Named Pipes Access Module
Data Flow
With Load and Unload Utilities

Figure 4 shows how Teradata Named Pipes Access Module works with client load and unload
utilities.

Figure 4: Data Flow Between Named Pipes and Load/Unload Utilities

A writer process writes an input data stream to a specified pipe either directly or through the
Data Connector API. In response to requests from a reader process, Teradata Named Pipes
Access Module does the following:

• Reads the data from the specified pipe

• Copies it to the fallback data file

• Submits it to the reader process

Teradata Named Pipes Access Module can also read data from an ordinary file or from a file
descriptor file system device on UNIX systems. However, using the module with an ordinary
file is not recommended and does not yield the same performance as using a flat file without
the access module.

The Named Pipes Access Module supports only read operations from a named pipe. You
cannot use the Named Pipes Access Module to write to a pipe. Additionally, the access module
is a block data transfer module; it is neither data-type nor record sensitive.

Writer Process

The writer process can be a client extraction utility, such as FastExport, or any other
application, data source, or device that can provide data in a format supported by the reader
process. On UNIX systems the writer process must run on the same system as the reader
process. UNIX pipes cannot span a network.

The interface between the writer process and the Named Pipes Access Module can be either a
named pipe or the Data Connector API. On Solaris SPARC systems, the interface can also be
unnamed pipes. However, Teradata Named Pipes Access Module does not support
interconnection through unnamed pipes on the following operating systems because these
systems do not have file descriptor file systems:

• HP-UX

• IBM AIX

• Linux

2425A013

Writer
Process

Fallback
Data File

Data
Connector

API

Named
Pipe

Named
Pipes

Access
Module

Data
Connector

API

Reader
Process
58 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Data Flow
• Windows 2000

• Windows XP

• Windows 2003

Reader Process

The reader process can be a client load utility, such as Teradata FastLoad, Teradata MultiLoad,
or Teradata TPump. Because Windows named pipes can span networks, the reader and writer
processes can reside on different network-connected Windows systems.

The Data Connector API provides the interface between the reader process and Teradata
Named Pipes Access Module.

With Teradata Parallel Transporter Infrastructure

The Named Pipes Access Module can be used transparently with any Teradata Parallel
Transporter (Teradata PT) consumer operator through the DataConnector operator. Figure 5
shows how the UNIX Named Pipes Access Module communicates with Teradata PT.

Figure 5: Data Flow Between Teradata Named Pipes and Teradata Parallel Transporter

Data flows through a UNIX named pipe between a writer process, such as Teradata
FastExport, and Teradata PT with a consumer operator, such as Load operator, and the SQL
Inserter operator, Teradata PT communicates with the Data Connector operator, which
communicates with the UNIX Named Pipes Access Module.

On UNIX systems, the module supports transfer with Teradata PT through named pipes and
files. Refer to Teradata Parallel Transporter Reference for more information.

Writer Process

Because UNIX pipes cannot span a network, both the writer process and the Teradata PT
process must reside on the same UNIX system. The writer process does not require an
instance of the Data Connector module. The writer process can be any third-party application
that supplies data through a named pipe in the format supported by the reader process.

Reader Process

The reader process is the UNIX Named Pipes Module, np_axsmod.so, which tracks data flow
and copies inbound data to a fallback data file. If Teradata PT determines it must fall back to

2425C001

Writer
Process

Fallback
Data File

Data
Connector

API

Named
Pipe

Named
Pipes

Access
Module

Data
Connector
Operator

Teradata
Parallel

Transporter

Consumer
Operator
Teradata Tools and Utilities Access Module Reference 59

Chapter 3: Named Pipes Access Module
Using Teradata Named Pipes Access Module
an earlier point in the data stream, it issues the standard File Set Position access command to
np_axsmod.so, which supplies subsequent reads from the data it saved in the fallback data file.

Using Teradata Named Pipes Access Module

You can use Teradata Named Pipes Access Module a variety of ways:

• On UNIX with client load and unload utilities with the following configurations:

• Named pipes

• Unnamed pipes and file descriptor devices

• Teradata PT

• On Windows 2000/XP/2003

With Client Load and Unload Utilities

On UNIX systems, you can use the Named Pipes Access Module with named pipes. On Solaris
SPARC systems, you can also use the access module with unnamed pipes that correspond to
open file descriptor file system devices (/dev/fd devices).

With Named Pipes

To use Teradata Named Pipes Access Module on UNIX with named pipes:

1 Use the UNIX mknod command with the p option to create a named pipe. In the following
example, /tmp/mypipe is the name of the pipe:

/sbin/mknod /tmp/mypipe p

2 Program the writer process to send its output stream to the named pipe, as in the
following FastExport script example:

.EXPORT OUTFILE /tmp/mypipe;

3 Program the reader process to read from the named pipe as in the following FastLoad
script example:

axsmod np_axsmod.so “fallback_directory=...”;
define file= /tmp/mypipe;

4 Launch both the writer and the reader processes, as in the following example where
flod.cmds is the name of the FastLoad job script file:

fexp <fexp.cmd & fastload <flod.cmds &

In this example, UNIX connects both processes through the named pipe /tmp/mypipe.

With Unnamed Pipes and File Descriptor Devices

To use Teradata Named Pipes Access Module with unnamed pipes and file descriptor devices:

1 Program the writer process to send its output to a file descriptor device greater than 2
(stderr), such as /dev/fd/4, as in the following FastExport script example:

.EXPORT OUTFILE /dev/fd/4;
60 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Using Teradata Named Pipes Access Module
2 Program the reader process to read from a file descriptor device greater than 2 (stderr),
such as /dev/fd/3, as in the following FastLoad script example:

axsmod np_axsmod.so “fallback_file=...”;
define file= /dev/fd/3...;

3 Plumb the resulting file descriptors together using a shell pipeline, such as:

fexp <fexp.cmds 4>&1 >fexp.out | \
fastload 3<&0 <flod.cmds >flod.log

In this example UNIX diverts the FastExport standard output to the file fexp.out and:

• fexp.out is the name of the diverted FastExport output file

• flod.cmds is the name of the FastLoad job script file

With Teradata Parallel Transporter

To use Teradata Named Pipes Access Module with Teradata PT on UNIX:

1 Create a named pipe (for example /tmp/mypipe).

2 Create a Teradata PT script that specifies /tmp/mypipe as the filename opened by the
module. For example, the script tbuild.txt contains a statement similar to the following,
defining the Teradata PT Data Connector Operator:

DEFINE OPERATOR DataConnector ()
TYPE DATACONNECTOR PRODUCER
OUTPUT SCHEMA Tab3schema
ATTRIBUTES

(
VARCHAR FileName = '/tmp/mypipe',
VARCHAR PrivateLogName = 'DcImport.log',
VARCHAR AccessModuleName = 'np_axsmod.so',
VARCHAR AccessModuleInitStr = 'ld=. fd=.',
VARCHAR IndicatorMode = 'N',
VARCHAR OpenMode = 'Read',
VARCHAR Format = 'Formatted'
);

The following attributes are relevant to the Named Pipes Access Module:

• FileName specifies the name of the named pipe.

• AccessModuleName specifies the Named Pipes Access Module. For example, on Solaris
SPARC, the AccessModuleName is np_axsmod.so.

• AccessModuleInitStr specifies the access module’s initialization string.

All other Teradata PT Data Connector Operator attributes are transparent to the access
module.

3 Code an Export Operator script named fexp.coms containing a statement similar to the
following:

.EXPORT OUTFILE /tmp/mypipe ;

4 Launch Export Operator and Teradata Parallel Transporter with shell commands similar
to the following:

fexp < fexp.cmds > fexp.out & tbuild -f tbuild.txt &

In this example, UNIX connects both processes through the named pipe /tmp/mypipe.
Teradata Tools and Utilities Access Module Reference 61

Chapter 3: Named Pipes Access Module
Restarting a Job
The Load operator can direct the access module to save a checkpoint in case the job must
be restarted.

For Windows

On a Windows system, use the following procedure to Teradata Named Pipes Access Module
with client load and unload utilities, such as FastLoad or FastExport.

Named pipes follow the Microsoft Universal Naming Convention (UNC) for networked
entities: \\ system_name\ pipe_name

Specifying the system name as part of the pipe name enables data transfer between networked
systems. Using a period character (.) as the system_name specifies the local system. Unlike
UNIX, named pipes on Windows are not persistent. The access module creates them
automatically, and they are destroyed when the access module closes them.

1 Program the reader process to specify the Named Pipes Access Module, as in the following
FastLoad script example:

axsmod np_AXSMOD.dll “fallback_directory=...”;
define file=\\.\pipe\mypipe...;

2 Program the writer process to send its output stream to the named pipe, as in the
following Fast Export script example:

.EXPORT OUTFILE \\.\pipe\mypipe;

3 Launch the reader and writer process from two different command windows (CMD.EXE).

Note: On Windows systems, the reader process must be running and in the wait mode for
a pipe read operation before you launch the writer process. The FastLoad utility, for
example, indicates this status by displaying: Starting to send to RDBMS with
record 1.

a To launch FastLoad in one command window, enter the following, where flod.cmd is
the name of your FastLoad job script file:

fastload <flod.cmd

b Wait until FastLoad has initialized and is ready for a pipe read operation.

c To launch FastExport in another command window, enter the following:

fexp <fexp.cmd

Restarting a Job

Restarting the Named Pipes Access Module depends on the utilities being used.

With Client Load and Unload Utilities

The Named Pipes Access Module supports normal checkpoint and restart/recovery operations
on the reader process system, but has no such interaction with the writer process.

Routine recovery operations on the reader process system are handled automatically by the
Named Pipes Access Module. They require no manual intervention:
62 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Operational Considerations
• If the reader process terminates unexpectedly, restart the job, which causes the Named
Pipes Access Module to use the fallback data file to relocate to the last checkpoint in the
data stream.

• If the writer process terminates unexpectedly, manually abort the reader process and
resynchronize the job.

The writer process generally restarts from its beginning, while the reader process falls back to
the last checkpoint, allowing the Named Pipes Access Module to synchronize the two. You
might need to take the following additional steps to complete the restart operation, depending
on which client load and unload utilities are used:

1 Prepare the writer process source for a clean start.

The FastExport utility, for example, uses a log table to determine that a task was
interrupted. To start an interrupted FastExport job from its beginning, you must first drop
the FastExport log table.

Note: The log table is specified by the LOGTABLE command in the FastExport job script.

2 Modify the reader process job script. For example, in the FastLoad utility, do the following:

a Remove any statement that drops the table being loaded.

b Remove any statement that creates the table being loaded.

3 Launch both the writer and the reader processes as described in “Using Teradata Named
Pipes Access Module” on page 60. The Named Pipes Access Module uses the fallback data
file from the interrupted job to locate the restart position in the data stream from the
writer process.

With Teradata Parallel Transporter

If a transfer terminates unexpectedly, you can restart the transfer. Under Teradata Parallel
Transporter, the pipe writer process must restart from its beginning, but the Teradata Parallel
Transporter infrastructure falls back to its last checkpoint, allowing the access module to
synchronize the two. This saves time because the Teradata Parallel Transporter infrastructure
does not have to reinsert into the destination table those records that have already passed
through the pipe.

To specify a restart, issue the tbuild command with the -r option, as in the following example:

fexp < fexp.cmds > fexp.out & tbuild -r -f tbuild.txt &

In Teradata Parallel Transporter, the consumer operator cannot automatically direct the access
module to restart, as do the client load utilities. All restarts require operator intervention.

Operational Considerations

The following things should be considered when using the Named Pipes Access Module.
Teradata Tools and Utilities Access Module Reference 63

Chapter 3: Named Pipes Access Module
Operational Considerations
Fallback Data File Space Requirements

The fallback data file requires enough space to save all of the data between two successive
checkpoints. If the directory that you specify for the fallback data file does not have enough
free space to save all of the data read during the checkpoint interval, then the Named Pipes
Access Module will not be able to provide all of the data to support a subsequent restart
operation.

Always specify a directory for the fallback data file that has enough free space to store all of the
data expected during the checkpoint interval.

Example

The “Checkpoint Tradeoffs” subsection in Chapter 2 of Teradata FastLoad Reference
recommends checkpoints be taken as follows:

• Every 100,000 records if each record is less than 4 Kb

• Every 50,000 records if each record is more than 4 Kb

These guidelines imply that the fallback data file should range from 200 to 400 Mb in size for
small- to medium-sized databases. For large databases, the fallback data file might need to be
1 Gb or greater.

Deleting the Fallback Data File

By default, the Named Pipes Access Module reports an end-of-file condition and deletes the
fallback data file when the last record written to the pipe is read and sent to the reader process.
But because the module handles only raw data streams and disregards data formats imposed
by the writer or reader processes, it cannot distinguish between a normal end-of-file condition
and an end-of-data condition that would occur if the writer process halts prematurely.

If the writer process terminates before achieving a normal end-of-file condition, the Named
Pipes Access Module, by default, interprets the empty pipe as a normal end-of-file condition
and deletes the fallback data file. In this case, the data would no longer be available to support
a subsequent reader process restart operation.

To override automatic deletion of the fallback data file, include the
confirm_fallback_deletion=y (cfd=y) parameter in the Named Pipes Access Module
initialization string. The Named Pipes Access Module will then prompt you to confirm the
action before deleting the fallback data file.

Fallback Level Restriction

The fallback data file is limited to one level. The data stream from each successive checkpoint
interval overwrites that of the prior interval. Attempting to restart at a file position earlier
than the last checkpoint position produces an error condition.
64 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
Deleting the Log File

The Named Pipes Access Module neither deletes nor restricts the growth of the optional log
file. If you specify a log file in the Named Pipes Access Module initialization string, you must
also determine when to truncate or delete the file.

Open Pipes Restriction

The number of open pipes is limited to one per instance of the Named Pipes Access Module
under the following conditions:

• When you specify a fallback data file name

The one-to-one relationship between open pipes and fallback data files imposes this
restriction. To avoid this constraint, allow the Named Pipes Access Module to assign the
fallback data file names by specifying only a directory name or accepting the default
directory name for fallback data files.

• When you use unnamed pipes on a Solaris SPARC system

Because a file descriptor file system device can be opened by more than one process at the
same time, you cannot allow the Named Pipes Access Module to generate default fallback
data file names when using unnamed pipes. Instead, you must specify a fallback data file
name for the unnamed pipe, thereby imposing the one-pipe-per-instance restriction.

Teradata Parallel Transporter Restrictions

The following restrictions apply to using the Teradata Parallel Transporter:

• Unlike the client load utilities, Teradata Parallel Transporter cannot use the file descriptor
file system devices to connect a writer process with the reader process through the Access
Module. This is a limitation of the Teradata Parallel Transporter infrastructure, because
the tbuild process does not accept data through its standard input.

• A Teradata Parallel Transporter job must be restarted from its beginning.

Named Pipes Access Module Log File

The Named Pipes Access Module log file is an ordinary text file that the access module creates
to save operational status information. You can access the log file using standard UNIX and
Windows text-editing utilities.

Name and Location

By default, the Named Pipes Access Module log file is named namedpipes.log, which is located
in /tmp on UNIX systems and in %TEMP% then C:\ on Windows 2000/XP/2003 systems.

You can specify a different location for the log file using the log_directory parameter in the
Named Pipes Access Module initialization string. See “Initialization String” on page 75.
Teradata Tools and Utilities Access Module Reference 65

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
Format

Each entry in the Named Pipes Access Module log file is a numbered five-field record
formatted as follows:

time-stamp process level message_number text

where:

See the table in the next section for a description of the log file messages.

Messages

The following table describes each message, listed by message number, that can be written in
the Teradata Named Pipes Access Module log file.

Many of the message descriptions cite access module functions generated by the Data
Connector API in response to your client utility commands. For these messages, refer to
Teradata Tools and Utilities Access Module Programmer Guide for information about the Data
Connector API Access Module functions.

Field Name Description.

time-stamp Time-stamp locale-specific date and time stamp information, such as:

Thur Jan 20 16:33:57 2000

process Decimal process ID of the logged task.

level Indication of the logging level, either:

CRITICAL
ERROR
WARNING

INFO
DEBUG
TRACE

message-number Decimal message number associated with the log message.

text Log message text string.

Table 5: Teradata Named Pipes Access Module Error Messages

Number Log Level Message Text Description/Response

6 2/Error The Named Pipes Access
Module currently does
not support writing.

The client utility attempted either a File
Open for write or a File Write operation.

Revise the utility job script to avoid using
the access module for those operations.

8 2/Error The Access Module
still has open files.

A File Open operation was attempted on a
file that was already open.
66 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
12 2/Error Error encountered
during memory mgmt.

The access module did not allocate
memory for an internal buffer, structure or
string.

On UNIX systems, verify that the ulimit for
process data is not too low.

13 2/Error Invalid open mode:
value.

An undefined open mode of decimal value
value was used with a File Open operation.

Revise the Client utility job script to not
use this access module for that operation.

15 2/Error Invalid Block_size
value: value

The value value is not a valid block size.

Revise the access module initialization
string in the utility job script to specify a
valid block_size value.

16 2/Error or
3/Warning

Data validation failed
during synchronization
of the write side. The
data read from the
pipe did not match the
previous data read
during data recovery.
This could be due to
the database changing
between transfer
attempts.

Logged as a level-2 Error message when the
Client utility attempts to recover an earlier
session, the signature_check level is 2, and
the restarted write process data stream fails
the signature check.

To guarantee a consistent transfer, unlock
the destination table and start the
operation from the beginning.

If the signature_check level is 1, then the
message is logged as a level-3 Warning, but
no error condition is returned to the Client
utility.

23 2/Error Invalid positioning
data length was
passed.

The Client utility passed position data of
an invalid length. This should not occur.

24 2/Error Named Pipes Access
Module has received an
unsupported request
"mnemonic"(code code)
from the calling
software, "process
name". It is possible
that the calling
software version is
incompatible with this
access module.

The Client utility attempted an operation
that is not supported by the access
module.

If it is available, the message text includes
the standard command mnemonic
(mnemonic), along with the decimal
command code (code).

Possibly the Client utility is not able to use
the access module.

32 2/Error The Position value did
not match the
available values. Only
the last one returned
should be used.

A File Set Position operation used position
information that did not match one of the
last two values returned by the access
module.

Unlock the destination table and start the
operation from the beginning.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
Teradata Tools and Utilities Access Module Reference 67

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
33 2/Error An unrecognized
attribute name was
specified.

The Data Connector API issued one or
more of the following functions that are
not implemented by the Named Pipes
Access Module:

• pmiPIDMOptPutA_A

• pmiPIDMOptGetA_A

• pmiPIDMOptPutF_A

• pmiPIDMOptGetF_A

Note: This message occurs frequently
when using the FastLoad, TPump, and
MultiLoad utilities.

34 1/Critical
or 2/Error

An unexpected critical
exception occurred in
the description.

General failure message.

37 2/Error Error encountered:
description

On UNIX systems a library detected and
reported an exception described in
description.

38 2/Error The Named Pipes Access
Module was entered on
a different thread.
This is not supported.

On Windows systems a thread entered the
access module with a thread ID that was
different from that of the thread that
originally the module.

The Named Pipes Access Module does not
support multiple threads.

39 2/Error Cannot get module
filename because:
explanation

On Windows systems a WIN32 API
GetModuleFileName() call failed.

40 2/Error Cannot get size of
module version
information because:
explanation

On Windows systems a WIN32 API
GetFileVersionInfoSize() call failed.

41 2/Error Cannot get module
version information
because: explanation

On Windows systems a WIN32 API
GetFileVersionInfo() call failed.

42 2/Error Cannot get version
information from
version information
resource.

On Windows systems a WIN32 API
VerQueryValue() call failed.

43 2/Error Cannot allocate n
bytes of memory
because: explanation

On Windows systems a memory allocation
for n bytes of data failed.

44 2/Error No pipe name or path
has been provided to
Named Pipes Access
Module.

The File Open function passed a zero-
length string as the pipe name.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
68 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
45 2/Error Could not open the
requested Pipe,
"pipename", because:
explanation

The Named Pipes Access Module could
not create or open the pipe or device
named pipename for the reason described
in explanation.

Check the pipe name for correct spelling,
permissions, or existence, and update the
Client utility job script if necessary.

49 2/Error Could not format error
message because:
number

On Windows systems a call to the WIN32
API FormatMessage() failed. The reason is
given in the decimal error number number,
from the SDK file WINERROR.H.

51 2/Error Write to the fallback
file failed. The file
is deleted because
recover data is now
corrupted, but the
transfer will
continue.

This message indicates that a subsequent
recovery operation may not be possible. It
does not, by itself, indicate that the transfer
failed.

Verify that sufficient space is available in
the fallback data directory.

52 2/Error The fallback file is
missing so data is not
available to be
recovered.

A File Set Position occurred but no fallback
data file was available. The restart
operation failed.

Verify that sufficient free space is available
in the fallback directory.

53 2/Error Error received during
recovery while reading
the Fallback file:
filename.

The recovery operation failed. Determine
why the file named filename could not be
read.

54 2/Error The initialization
string "keyword" has
no value.

Assign a value to the given Named Pipes
Access Module initialization string
keyword in the Client utility job script.

58 2/Error Invalid
Signature_Check value:
value

The signature_check parameter has been
assigned a value other than 0, 1, or 2 in the
initialization string. The invalid value is
shown as value.

61 2/Error Cannot read from file
because: explanation

An I/O error occurred while reading from
the pipe or file.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
Teradata Tools and Utilities Access Module Reference 69

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
72 1-6/(any) Log Initialize:
ProcessName=processnam
e, UtilityID=id,
FileName=filename,
LogLevel=level

This informational message occurs when a
new process opens the log file or the log
level changes.

The operating system process name as
processname. This process name is
associated with the process ID number for
this entry as well as all subsequent entries
with the same ID.

The utility ID appears as id unless the
NPLOGDIR environment variable is
defined.

The name of the log itself appears as
filename and the new log level is the
decimal value level.

73 2/Error The module rejected an
attempt to open a
second device because
the initialization
string specifies a
fallback file (vs. a
directory).

Update the initialization string in the
Client utility job script to use a fallback
directory instead of a fallback file.

75 2/Error Invalid Fallback file:
filename

During writer-process restart a File Set
Position occurred, the signature check
failed, and the initialization string
specified signature check level 2. This
implies that the data sent through the pipe
has changed from the earlier attempt. In
this case, delete the destination table and
start the transfer from the beginning.

Alternately:

• A File Open occurred, an existing
fallback file was specified in the
initialization string, but the file did not
have the standard format or referred to
a different pipe name.

Retry the transfer, specifying a different
fallback file.

• A File Set Position occurred, resulting
in a failed seek within the fallback data
file. This implies that the file is corrupt
and should be deleted.

77 2/Error A memory allocation
failed.

On UNIX systems a memory allocation
failure occurred. Check the process ulimit
value.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
70 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
78 1-6/(any) Previous entry occurs
n times.

This informational message indicates that
the preceding message occurred n times,
even though only one instance appears in
the log file. (This message does not count
as an occurrence.)

79 2/Error Could not open the
fallback file
"filename", because:
explanation

Because the fallback data file could not be
accessed, the checkpoint and restart
functions are effectively disabled. This does
not indicate, however, that the transfer
failed.

Verify that the initialization string
fallback_directory and fallback_file
parameters are valid.

80 4/
Informatio
n

Successfully created
the fallback file
"filename".

This informational message documents the
creation or re-creation of a specified or
automatically generated fallback data file.

This occurs on File Open or on File Get
Position if a previous write error occurred.

81 2/Error Invalid Log Level
value: level

The initialization string specifies a
log_level parameter with a value other
than 0 through 6. The erroneous value
appears in level.

82 2/Error Undefined
initialization string
keyword: keyword

The Named Pipes Access Module
initialization string uses an invalid
keyword. Replace the invalid keyword
parameter specification, keyword, in the
initialization string.

83 2/Error or
5/Debug

Fallback file header
does not contain the
correct magic number!

If the initialization string assigns a fallback
file and the fallback file is found with a bad
magic number, this message is logged at
level 2 and an error is returned in response
to the File Open command.

Note: The magic number is the string
“Named Pipes Data Access Module
Fallback File vv.vv.vv\n” in the fallback
data file header that identifies the version
number of the file format as vv.vv.vv\n.

If a fallback directory is specified, this
message is logged at level 5 and the file is
ignored.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
Teradata Tools and Utilities Access Module Reference 71

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
84 2/Error or
5/Debug

Fallback file header
does not contain the
correct pipe name!

If the initialization string assigns a fallback
file and the fallback file is found with a
pipe name that does not match that passed
during File Open, this message is logged at
level 2 and an error is returned in response
to the File Open command.

If a fallback directory is specified, this
message is logged at level 5 and the file is
ignored.

85 2/Error or
5/Debug

Fallback file header
does not contain the
correct block size
parameter.

If the initialization string assigns a fallback
file and the fallback file is found with a
block size that does not match that
specified in the initialization string, this
message is logged at level 2 and an error is
returned in response to the File Open
command.

If a fallback directory is specified, this
message is logged at level 5 and the file is
ignored.

86 4/
Informatio
n

Deleting fallback
file "filename" of
size n.n megabytes
after successful
transfer.

This informational message provides file
size information that you can use in
capacity planning for the fallback data file.

87 2/Error The initialization
string keyword
"keyword" specifies
the nonexistent
directory
"directory_name"!

The Named Pipes Access Module
initialization string includes a
log_directory or a fallback_directory
parameter (keyword) that specifies a
nonexistent directory (directory_name).

Either create the specified directory or
modify the initialization string to specify a
valid directory.

88 4/
Informatio
n

Recovered fallback
file "filename" for
synchronizing the pipe
writer.

This informational message indicates that
the Named Pipes Access Module:

• Has located and validated the fallback
data file (filename) in response to a File
Open command

• Is awaiting a File Set Position command
to initiate a recovery operation

89 2/Error The module rejected an
attempt to open the
directory
"directory_name" for
input. Please specify
a named pipe or a file
instead.

This message occurs on File Open if the
Client utility job script erroneously
specifies a directory name instead of a
pipe, a device, or a file name.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
72 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
90 2/Error The module failed to
create the
directory
"directory_name".

On UNIX systems this message occurs
during File Open if the access module
cannot create an intermediate directory in
the path of the specified pipe.

91 4/
Informatio
n

The module created the
named
pipe "pipename".

On UNIX systems this message indicates
that the access module successfully created
the specified named pipe during File
Open.

Note: The pipe remains after the access
module has closed it.

92 2/Error The module failed to
create the
named pipe "pipename".
Explanation.

On UNIX systems this message indicates
that the access module could not create the
named pipe pipename.

Check for spelling errors in the Client
utility job script, as well as permissions of
the directories in the path.

93 4/
Informatio
n

The Data Connector
issued a Read when a
Set Position was
expected. Abandoning
recovery and reusing
fallback file
"filename".

This informational message indicates that
the access module had validated a fallback
data file as a candidate for recovery, but is
recycling the file because the Client utility
did not initiate a recovery operation.

94 4/
Informatio
n

The Data Connector
issued a Get Position
when a Set Position
was expected.
Abandoning recovery
and reusing fallback
file "filename".

This informational message indicates that
the access module had validated a fallback
data file as a candidate for recovery, but is
recycling the file because the Client utility
did not initiate a recovery operation.

95 4/
Informatio
n

The pipe reader has
successfully re-
synchronized with the
pipe writer.

This informational message occurs on File
Set Position after the module has
successfully restarted the write process
system.

96 2/Error The initialization
string keyword
"keyword" specifies
the unwritable
directory "dir"!

This message occurs if the initialization
string contains a log_directory or a
fallback_directory keyword that refers to a
read-only directory.

Either change the properties of the
directory to be writable or modify the
initialization string to refer to a writable
directory.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
Teradata Tools and Utilities Access Module Reference 73

Chapter 3: Named Pipes Access Module
Named Pipes Access Module Log File
WIN32 Named Pipes API

When creating a Win32 client application that writes to a named pipe, it is necessary to know
how the named pipes server creates the named pipe. This is important to be able to code the
corresponding options on the client application's CreateFile() system call.

The Win32 Named Pipes Access Module creates the named pipe using the following system
call:

CreateNamedPipe(PipeName, // Pipe name
PIPE_ACCESS_INBOUND, // Open mode
PIPE_TYPE_BYTE, // pipe mode
4, // Number of instances
BuffSize, // output buffer size
BuffSize, // input buffer size
100,// default timeout in milliseconds
NULL); // pointer to security attributes

where:

PipeName is any string of the form \\.\pipe\pipename and pipename is the pipe name agreed
upon between the client and server applications and BuffSize is a value twice the number of
bytes specified in the initialization string "Block_size" parameter.

A user-developed client application must code the GENERIC_WRITE (but not the
GENERIC_READ) option on its CreateFile() system call because the access module allows data
to flow only from client to server.

Example
HANDLE hPipe =
CreateFile(PipeName,// pipe name
GENERIC_WRITE,// write access
0, // no sharing
NULL, // no security attributes
OPEN_EXISTING, // opens existing pipe
0, // default attributes
NULL); // no template file

Alternately, the client utility can use standard `C' stream I/O, opening the pipe with the
following:

FILE *fp = fopen(PipeName, "wb");

97 2/Error The environment
variable NPLOGDIR
specifies the
directory "dir", which
is inaccessible or
unwritable!

This message occurs if the environment
variable NPLOGDIR refers either to a
nonexistent or to a write-protected
directory.

Either create the directory, add write
permission, or modify the initialization
string to refer to a valid directory.

Table 5: Teradata Named Pipes Access Module Error Messages (continued)

Number Log Level Message Text Description/Response
74 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Initialization String
As a named pipes server, the access module both connects to the pipe and reads from the pipe
using synchronous, blocking I/O. The client is free to write to the pipe either synchronously or
asynchronously.

The access module does not impose a message structure on the data flowing through the pipe.
Thus, the client application may write to the named pipe either as a stream of bytes or as a
stream of messages since the access module always reads from the pipe as a stream of bytes.

For details on programming Win32 named pipes, see the article "Named Pipes" under
Platform SDK in the Microsoft Developer's Network On-Line Library.

Initialization String

The initialization string for the Named Pipes Access Module is in the form keyword=value
where:

• keyword identifies the initialization parameter

• value is either an integer or a string, sometimes enclosed in single- or double-quote
characters

Function

Use the initialization string in your Teradata Client utility job script to specify or override the
default settings of the following parameters:

• Log Directory

• Log Level

• Block Size

• Fallback Data File Name

• Fallback Data Directory Path

• Fallback Data File Deletion

• Signature Checking
Teradata Tools and Utilities Access Module Reference 75

Chapter 3: Named Pipes Access Module
Initialization String
Syntax

Note: Because the Named Pipes Access Module applies each parameter as it parses the
initialization string, you can ensure the earliest possible acquisition of log information by
doing one of the following:

• Specify the log_directory parameter first

• Use the NPLOGDIR environment variable to specify the log directory

where:

Table 6: Initialization Syntax

Syntax Element Description

block_size=n Block size, in bytes, of the data transfer operation where n is an
integer from 1 to 2147483647.

The default, if you do not specify the block_size parameter, is
65536 bytes.

Due to the limitations in the Data Connector, the block size
must be greater than or equal to the size of the largest record
passing through the pipe. When the module is used in a trickle
feed environment, as with TPump, the shortest latency occurs
when the block size is set to the maximum record size.

confirm_fallback_deletion=y Specification to make the Named Pipes Access Module present
a confirmation prompt before deleting the fallback data file.

fallback_directory=directorypath Path of the fallback data file directory. The default directory, if
you do not specify the fallback_directory parameter, is:

• /opt/np_axsmod on UNIX systems

• %TEMP% or %WINDIR%\temp on Windows systems

fallback_file=filename Name of the fallback data file.

2425A006

n

7

=

b

log_directory

block_size

ld

= directorypath

log_level

ll

= n

fallback_file

ff

= filename

fallback_directory

fd

= directorypath

confirm_fallback_deletion

cfd

= y

signature_check

ck

= checklevel

need_full_block

nfb

= no
76 Teradata Tools and Utilities Access Module Reference

Chapter 3: Named Pipes Access Module
Initialization String
Specifying Directory Name on Windows

On Windows, if you specify a directory name for the initialization string that has spaces, you
must enclose that name within single quotes, for example: ’c:\documents and
settings’

log_directory=directorypath Path of the log file directory. If you do not specify the
log_directory parameter, the default is:

• /tmp on UNIX systems

• %TEMP% or C:\ on Windows systems

log_level=n Specification that sets the level of detail to be posted to the log
file, where:

• 0 = Disabled—No logging. This is the default log_level
value if you do not specify a log_directory path.

• 1 = Critical—Logs events where a critical resource, such as
memory or its message strings, cannot be obtained.

• 2 = Error—Logs error conditions. This is the default if you
specify a log_directory path but do not specify a log_level
value.

• 3 = Warning—Logs unusual events that do not halt
processing.

• 4 = Information—Logs operational events or statistics.

• 5 = Debug—Logs details normally required for debugging.

• 6 = Trace—Logs all available information about each I/O
operation.

need_full_block=no Explicitly enables buffer flushing within client scripts when
this parameter is set to “no.”

This parameter must be set to “no” when TPump is using
latency option with IMPORT.

Buffer flushing needs to perform check-point restarting
somewhat differently then when buffer flushing is not enabled
(the default), the fallback recovery data generated is different,
and is not interchangeable between flushing and non-flushing
modes.

signature_check=checklevel Specification that sets the level of detail to be posted to the log
file, where:

0 = Disabled—A signature is neither calculated nor checked.

1 = Enabled/No Return— Calculates and checks a signature
and logs an error if the check fails, but does not return an error
condition.

2 = Enabled/Return— Calculates and checks a signature and
logs and returns an error condition if the check fails.

Table 6: Initialization Syntax (continued)

Syntax Element Description
Teradata Tools and Utilities Access Module Reference 77

Chapter 3: Named Pipes Access Module
Initialization String
78 Teradata Tools and Utilities Access Module Reference

CHAPTER 4

Teradata WebSphere MQ
Access Module

Teradata WebSphere® MQ Access Module allows Teradata utilities to import data using IBM®
WebSphere MQ message queuing middleware. Topics include:

• Supported Operating Systems

• Access Module Name

• Features

• Data Flow

• Initialization String

• Checkpoint Processing

• MVS JCL Requirements

Supported Operating Systems

Teradata WebSphere MQ Access Module operates on the following systems:

• HP-UX

• IBM AIX

• IBM MVS/ESA

• Linux, Linux Opteron

• Solaris SPARC, Solaris 10 Opteron

• Windows 2000, XP, and Server 2003

For the most up-to-date information about supported releases, see Supported Releases in the
Preface.

Installation

Teradata WebSphere MQ Access Module and Teradata Parallel Transporter (Teradata PT)
version of the WebSphere MQ Access Module are included in the Teradata software on the
following operating systems:

• MVS/ESA on magnetic cartridge

• AIX, HP-UX, Linux, Solaris SPARC, and Windows on the Teradata Tools and Utilities
Load/Unload CD
Teradata Tools and Utilities Access Module Reference 79

Chapter 4: Teradata WebSphere MQ Access Module
Access Module Name
For information about installing the access module, refer to the installation guide appropriate
for your operating system. For information about installing WebSphere MQ, refer to IBM’s
documentation.

Access Module Name

The version of the access module available on your system depends on the operating system
and whether the WebSphere MQ Server or the WebSphere MQ Client was installed. Each
supported operating system also has a Teradata PT Server and Client version of the access
module.

To use Teradata WebSphere MQ Access Module with a Teradata utility you must reference the
access module names in your job script. The following table lists the Teradata WebSphere MQ
Access Module name to use as the AXSMOD name specification in your Teradata job script.

Table 7: AXSMOD Name Specification for Teradata WebSphere MQ Access Module

Operating System WebSphere MQ Version Access Module Name Mode

AIX WebSphere MQ Client libmqsc.so 32-bit and 64-bit

WebSphere MQ Server libmqs.so 32-bit

HP-UX WebSphere MQ Client libmqsc.sl 32-bit and 64-bit

WebSphere MQ Server libmqs.sl 32-bit and 64-bit

Linux WebSphere MQ Client libmqsc.so 32-bit

Linux Opteron WebSphere MQ Client libmqsc.so 32-bit

MVS/ESA WebSphere MQ Server LIBMQS 32-bit

WebSphere MQ Server-
Teradata PT

LIBMQST

Solaris SPARC,
Solaris Opteron

WebSphere MQ Client libmqsc.so 32-bit and 64-bit

WebSphere MQ Server libmqs.so 32-bit

Solaris Opteron 10 WebSphere MQ Client libmqsc.so 32-bit

WebSphere MQ Server libmqs.so 32-bit

Windows
2000/XP/2003

WebSphere MQ Client libmqsc.dll 32-bit

WebSphere MQ Server libmqs.dll 32-bit
80 Teradata Tools and Utilities Access Module Reference

Chapter 4: Teradata WebSphere MQ Access Module
Features
Features

A basic knowledge of WebSphere MQ and its APIs is required before attempting to configure
and use Teradata WebSphere MQ Access Module. However, no direct access to APIs exists in
the WebSphere MQ Access Module.

Teradata WebSphere MQ Access Module allows Teradata utilities to import data using IBM
WebSphere MQ message queuing middleware. Teradata WebSphere MQ Access Module
transfers data between the WebSphere MQ client or server and the Data Connector. The Data
Connector is the interface between Teradata WebSphere MQ Access Module and Teradata
utilities.

WebSphere MQ provides connectivity between different types of applications that might be
written in different languages or on different operating systems or networks. Platform-specific
versions of Teradata WebSphere MQ Access Module provide the appropriate connectivity
between different operating systems. This connectivity capability eliminates the need for the
application developer to write code that provides this connectivity. Eliminating the need to
write that code results in the following benefits:

• Faster application development time

• Transactional integrity (which means that messages are assured delivery)

• Asynchronous delivery of messages

Teradata WebSphere MQ Access Module supplements the reliability and convenience of
message queues with checkpoint and restart capability by caching data in a fallback data file.
When used with utilities such as TPump to transfer data, the access module allows quick
recovery from the following:

• Restarts in the destination database

• Crashes on the system running the import utility

• Crashes on the data source, subject to the limitations of WebSphere MQ technology

Supported Utilities are denoted in

Table 8: Teradata Utilities Supported by the WebSphere MQ Access Module

Operating
System BTEQ FastLoad FastExport MultiLoad TPump Teradata PT

Linux 32-bit Yes Yes No Yes Yes Yes

UNIX HP-UX
32-bit and 64-bit

Yes Yes No Yes Yes Yes

IBM AIX
32-bit and 64-bit

Yes Yes No Yes Yes Yes

IBM MVS
32-bit

Yes Yes No Yes Yes Yes
Teradata Tools and Utilities Access Module Reference 81

Chapter 4: Teradata WebSphere MQ Access Module
Data Flow
Standard Output Files

Teradata WebSphere MQ Access Module

Teradata WebSphere MQ Access Module directs standard output (stdout) to the terminal or
screen.

Teradata PT Version of Teradata WebSphere MQ Access Module

On all operating systems except for MVS/ESA, the Teradata PT version of the WebSphere MQ
Access Module directs standard output to WAMstdout.txt in the current directory. You can
find results of the help command in this file.

On MVS/ESA, the access module directs the output to SYSPRINT.

Data Flow

Figure 6 shows how Teradata WebSphere MQ Access Module imports data to a Teradata
Database through a client load utility, such as BTEQ, FastLoad, MultiLoad, or TPump.
Although the figure shows the data producer, the queue manager, and the load utility on
separate systems, these entities can be on the same system. If you are using the Teradata PT
version of the WebSphere MQ Access Module, the term DataConnector in this figure and
throughout this chapter refers to the Teradata PT DataConnector operator.

SUN Solaris SPARC
32-bit and 64-bit

Yes Yes No Yes Yes Yes

Opteron
32-bit

Yes Yes No Yes Yes Yes

Windows
XP/2000/2003

32-bit Yes Yes No Yes Yes Yes

Table 8: Teradata Utilities Supported by the WebSphere MQ Access Module (continued)

Operating
System BTEQ FastLoad FastExport MultiLoad TPump Teradata PT
82 Teradata Tools and Utilities Access Module Reference

Chapter 4: Teradata WebSphere MQ Access Module
Initialization String
Figure 6: Importing Data through WebSphere MQ with Load and Unload Utilities

The flow of data between a data producer, such as an eBusiness application, and a table in
Teradata begins as the data producer does the following:

1 Establishes a network connection with a WebSphere MQ queue manager using standard
WebSphere MQ interfaces

2 Composes database records into messages (the load utility defines the database records’
format)

3 Sends the messages to a message queue under control of the queue manager

At this point, the queue manager stores the incoming messages until the load utility reads and
removes them through the following sequence of events:

1 The WebSphere MQ Access Module establishes a connection to the queue manager.

2 The WebSphere MQ Access Module reads messages from the message queue when
directed to do so by the Data Connector.

3 The WebSphere MQ Access Module delivers the data to the Data Connector.

4 The Data Connector delivers the data to the load utility.

5 The load utility loads the data into a table within Teradata.

Note: If the load utility is on the same system as the queue manager, the queue manager can
be configured to trigger the load utility.

Initialization String

The initialization string for the WebSphere MQ Access Module consists of keywords and
corresponding parameters. You can specify all keywords within the initialization string. If
desired, you can specify additional keywords in a file. For information on this approach, see
the description below for the parmfile keyword.

Note: You must enter a hyphen before each keyword.

Data
Producer

WebSphere MQ
Manager

Loading Utility

Data
Connector

WebSphere MQ
Access
Module

Teradata

Fallback
File

Network Network 2425B002
Teradata Tools and Utilities Access Module Reference 83

Chapter 4: Teradata WebSphere MQ Access Module
Initialization String
See“Access Module Calls” on page 19 for information about the specific AXSMOD command
or command option syntax for each Teradata utility.

Syntax

Note: When defining parameter attribute in an initialization string or in a parameter file (-
parmfile), keywords are case-insensitive, and unrecognized keywords with invalid values cause
an immediate termination.

where:

- parmfile

A

- help

B

- qmgr <WebSphere MQ manager name> - qnm <WebSphere queue name>

- ckfile - tdm ()
'yes'
'no'

- bksz <Max.Msg.Size>

<ObjectName>

- rwait <max.seconds>
C

- owait - otenacity

C
- logfill

D

- Log - tlf'yes'
'no'

()
'yes'
'no'

()

D
- mqex - trcl- convert 'yes'

'no'
() <level = {0..4}> < ObjectName>

A B
<ObjectName>

<max.seconds> <max.seconds>

<LogObjectName>

2425C003

E

- SRVR- CHNL <name> <name>[:port]

E

- AlternateLog <DDNAME>

- flush ()
'yes'
'no'

- ALLOWSIGNAL 'yes'
'no'

()

Table 9: Initialization Syntax

Syntax Element Description

parmfile
<ObjectName>

Optional object name for the file in which more access module
parameters may reside. On MVS, this is a DDNAME that is defined in the
JCL.

• Each line in the parameter file may have a single keyword (parameter)
and its value(s).

• Empty lines will be ignored.

• Lines beginning with the pound # character will be ignored.

• Keywords must begin in the first column.

See “Example: JCL Excerpt” on page 91.

help Optional keyword that requests the display of a list of valid parameter file
keywords.

QMGR
<WebSphere MQ
Manager Name>

Required parameter that specifies the WebSphere MQ Manager, which
coordinates and routes messages to the appropriate queue.

If this parameter is not provided, the operator terminates with a fatal
error.

qnm<WebSphere
Qname>

Required keyword that specifies the queue name.
84 Teradata Tools and Utilities Access Module Reference

Chapter 4: Teradata WebSphere MQ Access Module
Initialization String
CKFILE
<ObjectName/
Statement>

Optional parameter that allows a request for checkpoint support through
the use of disk facilities.

On MVS/ESA, the <ObjectName> to which you want to write checkpoint
data is a DDNAME. For example:

CKFILE <DDNAME>

where <DDNAME> refers to a previously defined DDNAME within the
JCL.

On MVS/USS, <Statement> defines the DD statement. For example:

ckfile dsorg=ps,dsn=tpt.x2cuss,disp=new,ndisp=catlg,
cdisp=catlg,track,primary=100,secondary=20,recfm=u,
blksize=32760,lrecl=0

For restarts, set the disp value to shr. If the disposition value is equal to
new, and the data set already exists, the allocation and job will fail. Refer to
IBM MVS documentation for explanations of other parameters.

Enough disk storage to hold all checkpointed messages, plus space to copy
the file, is required.

If this parameter is not provided, no file-based checkpoint support is
available.

Note: On workstation platforms, to facilitate a checkpoint during a
recovery, a temporary file is created and resides in the same directory as
the checkpoint file. Named MQAMtmp.<pid>, this file supports the
process of removing obsolete records from the checkpoint file. The file is
removed upon completion of the checkpoint.

FLUSH <Yes/No> Optional parameter that ensures all checkpoint data is written to the
media. If you select Yes, the access module writes all checkpoint data to
the media. You must have file-based checkpoint support in effect to use
this option.

If you select No, checkpoint data is not written to the media. Significantly
fewer system resources are consumed if you choose this option.

If this parameter is not provided, the default is No.

TDM <Yes/No> Optional parameter that allows termination of duplicate messages. If you
select Yes, the access module returns an EOF if a duplicate message is
suspected. If you select No, the access module returns the duplicate
message.

Duplicate messages only occur during a recovery from a crash or ABEND
that occurred between the time that a message was written to the
checkpoint file and the time that the message was committed through a
MQCMIT command.

If this parameter is not provided, the default is Yes.

Table 9: Initialization Syntax (continued)

Syntax Element Description
Teradata Tools and Utilities Access Module Reference 85

Chapter 4: Teradata WebSphere MQ Access Module
Initialization String
BKSZ
<MaximumMsgSize>

Optional parameter that specifies the block size for WebSphere MQ
messages. You should define the block large enough to accommodate the
largest message anticipated.

The parameter BLKZ cannot be a value that exceeds the value of the DCB
BLKSIZE specified in the JCL within the checkpoint DD statement.

Acceptable Range: 1 byte - 4 MB

Note: On AIX platforms only, the upper limit on blocksize is 4MB rather
than 1MB.

If this parameter is not provided, the default is 32,000 bytes.

If an unacceptable value is provided, the following error is issued, and the
access module fails:

Teradata WebSphere MQ AMOD/OpenCkPtFile(!ERROR!):
Checkpoint DD DCB BLKSIZE (<DCB BLKSIZE value>)
less than potential required (<BLKZ + 4>) (a
function of keyword 'BKSZ')

RWAIT
<MaximumSeconds>

Optional parameter that specifies the MQGET wait time, which is the time
that MQGET waits if no message is immediately available. MQGET is
called iteratively in a loop with maximum iterations set to the read wait
interval value. To ensure that signals handlers are called, a sleep(0) call will
be within the body of the loop.

Acceptable Range: Enter 1 - 600 seconds or -1 for unlimited wait time.

If this parameter is not provided, the default is 1 second.

A zero length message encountered on the queue will trigger an EOF to the
application. This may be useful when using the unlimited wait feature
(RWAIT -1).

ALLOWSIGNALS
<Yes/No>

Optional parameter that determines whether signals handlers are called.
The default is Yes, which calls signal handlers while waiting for message
arrive. If No, signal handlers are not called.

OWAIT
<MaximumSeconds>

Optional parameter that specifies the MQOPEN retry time interval, which
is the wait time between an unsuccessful MQOPEN call and the next call
attempt.

Acceptable Range: 1 - 600 seconds

See the OTENACITY parameter for related information.

If this parameter is not provided, the default is 5 seconds.

OTENACITY

<MaximumSeconds>

Optional parameter that specifies the amount of time that the access
module attempts to open the designated Queue via an MQOPEN call.

Acceptable Range: 1 - 6000 seconds

If this parameter is not provided, the default is 5 seconds.

Table 9: Initialization Syntax (continued)

Syntax Element Description
86 Teradata Tools and Utilities Access Module Reference

Chapter 4: Teradata WebSphere MQ Access Module
Initialization String
LOGFILL<Yes/No> Optional parameter that packs log records to minimize wasted disk space.
If you select Yes, the module fills each disk block to the block size specified
in the Data Control Block. If you select No, the module fills each disk block
with a single message.

If this parameter is not provided, the default is Yes.

LOG <LogObjectName
/LogObjectStatement>

Optional parameter that requests and directs a Log object. All messages
received from MQ are echoed to the specified log.

On MVS/USS, <LogObjectStatement> defines the DD statement.

Example

log dsorg=ps,dsn=tpt.x2luss,disp=new,ndisp=catlg,
cdisp=catlg,track,primary=100,secondary=20,recfm=u,
blksize=2000,lrecl=0

To add to an existing log, set the disp value to mod.Setting the disp value
to new begins a new log, therefore a data set should not already exist.
Refer to IBM MVS documentation for explanations of other parameters.

If this parameter is not provided, no log is maintained.

ALTERNATELOG

<DDNAME>

Optional parameter for MVS version of WebSphere MQ Access Module
that opens an alternate log. Specifying an alternate log allows you to close
the primary log for external processing. An external notify exit routine
sends a signal to the access module to swap between the destination
defined by -LOG <DDNAME> and that defined by -AlternateLog
<DDNAME>. Swaps between the logs will occur each time a signal is
received.

If this parameter is not provided, no alternate log is maintained.

TLF <Yes/No> Optional parameter that specifies whether a log failure should cause a fatal
error or not. If you select Yes, the access module terminates if it is unable
to write to the log for any reason. If you select No, logging is disabled while
the access module continues to operate.

If this parameter is not provided, the default is Yes.

MQEX Optional parameter that allows the process to open the MQ named queue
exclusively.

If this parameter is not provided, it will not be possible for another process
to open this queue.

CONVERT <Yes/No> Optional parameter that requests the WebSphere MQ message character
set. If you select Yes, the access module converts data to the resident
character set. If you select No, the access module processes messages
without converting them.

If this parameter is not provided, the default is No.

Table 9: Initialization Syntax (continued)

Syntax Element Description
Teradata Tools and Utilities Access Module Reference 87

Chapter 4: Teradata WebSphere MQ Access Module
Initialization String
TRCL<level>
<ObjectName>

Optional parameter for diagnostics, where levels 0 through 4 indicate:

0: no diagnostic trace

1: job events only reported

2: I/O events

3: I/O buffers

4: detailed information

The default is zero (0), indicating no trace. Indicate a level of 1 or higher
for diagnostics or checkpoint support.

The filename designation on MVS is a DDNAME.

Note: The load utility you are using, not the access module nor the
DataConnector, creates job logs.

CHNL<name> Establishes the WebSphere MQ channel name on Windows platforms. For
UNIX platforms, the channel name is defined in environmental variables
(for example, MQSERVER) via the shell and system.

The channel name is optional on the following platforms:

• AIX

• HP-UX

• Linux

• Linux Opteron

• Solaris SPARC

• Solaris Opteron

• Windows 2000/XP/2003

If this parameter is not specified, the channel name is defined in
environmental variables via the shell and system.

For more information about the proper syntax and use of the
environmental variable, go to the WebSphere documentation at
http://ibm.com/webspheremq.

Table 9: Initialization Syntax (continued)

Syntax Element Description
88 Teradata Tools and Utilities Access Module Reference

http://ibm.com/webspheremq

Chapter 4: Teradata WebSphere MQ Access Module
Checkpoint Processing
Checkpoint Processing

If checkpointing is enabled, the access module reads messages from the queue, then copies the
data into a fallback file before delivering the data to the Data Connector. If the load utility
decides to restart at an earlier point in the data stream, it directs the Data Connector to issue
the File Set Position command to the access module. The module then supplies data from the
fallback data file until the restart is complete.

After a position request is made to the access module, additional processing by the client (and
probably the database) occurs. A checkpoint request is considered successful only after a
subsequent request from the client is received by the access modules. A checkpoint followed
by a function request for a reposition is considered successful by virtue of the contents of the
position information provided at the reposition. Support for a previous checkpoint is not
removed until the most recent checkpoint is successful. This approach allows recovery from a
checkpoint failure. On workstation platforms, a temporary file named MQAMtmp.<pid> may
be created and resides in the same directory as that of the checkpoint file (specified by the
CKFILE keyword).

When a reposition request immediately follows an open request, a restart is conducted. In this
case, one or more messages are retrieved from the checkpoint file before the messages are sent
back to WebSphere MQ.

Caution: Attempting restarts with multi-volume checkpoint files (checkpoint file allocated on multiple
disk volumes) can result in the loss or corruption of data. To ensure proper restarts, make sure
that the dataset for the DD statement MQCHKPT in the WebSphere MQ job step resides
entirely on one single disk volume.

SRVR<name>[:port] Establishes the WebSphere MQ server name on Windows platforms. For
UNIX platforms, the server name is defined in environmental variables
(for example, MQSERVER) via the shell and system.

The server name is optional on the following platforms:

• AIX

• HP-UX

• Linux

• Linux Opteron

• Solaris SPARC

• Solaris Opteron

• Windows 2000/XP/2003

If this parameter is not specified, the server name is defined in
environmental variables via the shell and system.

 For more information about the proper syntax and use of the
environmental variable, go to the WebSphere documentation at
http://ibm.com/webspheremq.

Table 9: Initialization Syntax (continued)

Syntax Element Description
Teradata Tools and Utilities Access Module Reference 89

http://ibm.com/webspheremq

Chapter 4: Teradata WebSphere MQ Access Module
MVS JCL Requirements
Repeatability of Messages

After recovery from a checkpoint failure, it is possible that messages read by one process may
not be repeated to the same process in the same order because another process has read the
rolled back messages in the queue. All messages sent to the Teradata utility after the most
recent checkpoint request are rolled back into the WebSphere MQ queue under the following
conditions:

• A reposition following a database recovery is requested

• The client process fails via an ABEND

If you require repeatability, you should establish a reserved queue name convention in which a
single reader process, such as TPump, uses the exclusive option to ensure that it is the only
reader of that queue. No other process should use that reserved queue name.

If the checkpoint file is populated and the first request made to the access module following
the opening of the named queue is a reposition, the first message returned is retrieved from
the checkpoint file. Otherwise, there is no effect because only a single record is maintained in
the checkpoint file. All other messages are implicitly rolled back in the case of a client ABEND.

MVS JCL Requirements

The job JCL includes the following required DDNAMES.

The job JCL includes the following optional DDNAMES.

Table 10: Required DDNAME Parameters

DDNAME Description

JOBLIB DD (or the
STEPLIB DD for the utility
using the access module)

Must include:

• MQ Access Module - DSN in which the MQ Access
Module resides

• MQ Libraries - DSN in which the MQ support modules
reside

Parameter DDNAME The DDNAME must match the parmfile keyword value. For
example, for the initialization string -parmfile
mqparms, include DDNAME MQPARMS.

Table 11: Optional DDNAME Parameters

DDNAME Description

AlternateLog DDNAME Include AlternateLog DDNAME to swap between the log and
an alternate log.

Checkpoint DDNAME Include DDNAME MQCHKPT for any checkpoint request.
90 Teradata Tools and Utilities Access Module Reference

Chapter 4: Teradata WebSphere MQ Access Module
MVS JCL Requirements
Example: JCL Excerpt

For the JCL excerpt that follows, the initialization string would be -parmfile mqparms.

//* Include the following in the STEPLIB (or JOBLIB) for the utility that
//* will be utilizing the WebSphere MQ Access Module (LIBMQS).
//STEPLIB DD DISP=SHR,DSN=<DS containing MQ Access Module>
// DD DSN=TER2.SASC700C.LINKLIB,DISP=SHR
// DD DSN=MQS.V1R2.SCSQAUTH,DISP=SHR
//*
//* E.g., initialization string provided via utility script:
//* "-help -parmfile mqparms"
//* will cause the following parameters to be accepted.
//MQPARMS DD *
Request file based checkpointing
ckfile mqchkpt
Set Access Module trace level to "1" and output to DDNAME MQTRCE
TRCL 1 MQTRCE
REQUIRED parameter, define Q manager
qmgr CSQ1
REQUIRED parameter, define named Q
qnm TLB1
/*
//SYSPRINT DD SYSOUT=*
//* If requested via utility script,
//* the PMTRCE DD will direct DataConnector trace.
//PMTRCE DD SYSOUT=*
//* WebSphere MQ trace output (DDNAME define in "TRCL" parameter)
//MQTRCE DD SYSOUT=*
//JRNL DD DISP=SHR,DSN=TPT.JOURNAL
 //* The following DD statement defines the checkpoint dataset.
//MQCHKPT DD DISP=(NEW,CATLG,CATLG),DSN=<checkpointDS>,
// SPACE=(CYL,(2,1)),VOL=SER=<VolSer>,
// UNIT=SYSDA,DCB=(RECFM=U,BLKSIZE=32760)
//* This form of the DD statement should be used for recovery after
//* a client failure.
//MQCHKPT DD DISP=(OLD,DELETE,KEEP),DSN=<checkpointDS>

Journal DDNAME The DDNAME must match the jrnl keyword value. For
example, for the keyword jrnl mqjrnl, include
DDNAME MQJRNL.

Trace DDNAME Include DDNAME MQTRACE for a trace request.

Table 11: Optional DDNAME Parameters (continued)

DDNAME Description
Teradata Tools and Utilities Access Module Reference 91

Chapter 4: Teradata WebSphere MQ Access Module
MVS JCL Requirements
92 Teradata Tools and Utilities Access Module Reference

CHAPTER 5

Teradata Access Module for JMS

Teradata Access Module for Java Message Service (JMS) is a utility in the Teradata Tools and
Utilities product set that offers a fast, asynchronous method to import and export data
between Teradata Database and any JMS-enabled messaging system, which are generally
referred to as Message Oriented Middleware (MOM) or Enterprise Services Bus (ESB)
systems. JMS provides simplified and vendor-independent communication with messaging
service providers.

Teradata Access Module for JMS can be invoked by certain Teradata load/unload utilities,
specifically Teradata FastLoad, Teradata MultiLoad, Teradata FastExport, Teradata Parallel
Transporter (PT) DataConnector Operator, BTEQ, and TPump.

Topics in this chapter include:

• Supported Platforms and Teradata Utilities

• Access Module Names

• Data Flow

• Interfaces

• Initialization Strings

• Session Character Sets

• Checkpoint Processing

• Code Sample

• Messages

Supported Platforms and Teradata Utilities

Teradata Access Module for JMS can be used on a number of operating systems. Table 12 lists
supported Teradata load/export utilities according to operating system.

Table 12: Platform and Utility Support for Teradata Access Module for JMS

Supported Utilities

Operating System BTEQ
Teradata
FastExport

Teradata
FastLoad

Teradata
MultiLoad

Teradata
TPump Teradata PT

HP-UX
PA-RISC

32-bit and
64-bit

Yes Yes Yes Yes Yes Yes
Teradata Tools and Utilities Access Module Reference 93

Chapter 5: Teradata Access Module for JMS
Access Module Names
For the most up-to-date information about supported operating systems, see Supported
Releases in the Preface.

Access Module Names

Teradata Access Module for JMS is designed to be invoked by the Data Connector. The Data
Connector is a software component linkage between Teradata utilities and an access module.
Table 13 lists the access module names.

Data Flow

Messaging is a way of communicating between software components. A client component
sends a message to a destination, and other receiver components can retrieve the message
from the specified part of this destination. The sender does not need to know anything about
the receiver except for the message format and destination. The sender and receiver

IBM AIX Power PC 32-bit and
64-bit

Yes Yes Yes Yes Yes Yes

UNIX
SUN Solaris on
SPARC 8, 9, and 10

32-bit and
64-bit

Yes Yes Yes Yes Yes Yes

Windows
2000/2003/XP

32-bit Yes Yes Yes Yes Yes Yes

Linux 32-bit Yes Yes Yes Yes Yes Yes

Table 12: Platform and Utility Support for Teradata Access Module for JMS (continued)

Supported Utilities

Operating System BTEQ
Teradata
FastExport

Teradata
FastLoad

Teradata
MultiLoad

Teradata
TPump Teradata PT

Table 13: AXSMOD Name Specifications

Operating System Access Module Name

Linux RedHat and SUSE libjmsam.so

UNIX HP-UX libjmsam.sl

IBM-AIX libjmsam.so

Solaris SPARC libjmsam.so

Windows 2000/XP/2003 libjmsam.dll
94 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Data Flow
components communicates with a messaging service, called Message Oriented Middleware
(MOM), which establishes the rules for communication and data exchange. Teradata Access
Module for JMS uses a JMS API to interface with a MOM service provider. The JMS API is a
common queuing messaging interface must be installed on the client system. For more about
the roles of the sender and receiver, see “Messaging Models” on page 98.

Importing Data

Figure 7 on page 96 is an overview of how data is imported from a JMS client application to
Teradata Database. In general, the data flow is as follows:

1 The client component sends a data message to a MOM service provider.

2 Depending on the messaging model, the JMS message server retrieves the data message
from a queue or topic within a MOM service provider. Conversely, the JMS message server
retrieves a data message from a queue or topic.

3 At the software code level, Teradata Access Module for JMS uses JMS connection calls to
access the configured JMS-administered objects to connect to the JMS server.

Each service provider has its own proprietary implementation of connections to
communicate with the JMS server and an administrative tool to configure the connection
and queue objects. Teradata Access Module for JMS is expected to use Java Naming
Directory Interface JNDI namespace to locate those JMS-administered objects.

4 The Data Connector initiates a sequence of instructions so Teradata Access Module for
JMS can get the data messages from the queue or topic. This sequence of instructions may
include the access module Initialize, File Open, File Read, File Get Position, and Shutdown
commands. See Table 14 on page 102 for more information on access module functions.

5 Teradata Access Module for JMS reads the data from the queue or topic. It copies the data
to a fallback data file for checkpoint and restart purposes and then delivers it to the Data
Connector.

6 The Data Connector transfers the data to a Teradata utility, such as BTEQ, FastLoad,
MultiLoad, or TPump.

7 The Teradata load utility processes and loads the data into a table in the Teradata Database.
Teradata Tools and Utilities Access Module Reference 95

Chapter 5: Teradata Access Module for JMS
Data Flow
Figure 7: JMS Importing to Teradata Database

Exporting with Teradata Export Utilities

Figure 8 on page 97 is an overview of how data is exported from Teradata Database to a JMS-
enabled client application through a Teradata export utility, namely FastExport or BTEQ. In
general, the data flow is as follows:

1 The Teradata export utility retrieves data from Teradata Database and transfers the data to
Teradata Data Connector.

2 Data Connector transfers the data to Teradata Access Module for JMS.

3 Teradata Access Module for JMS uses JMS connection calls to access configured JMS
administered objects, and connects to the JMS server.

4 Teradata Access Module for JMS composes database records into messages (the export
utility defines the database record format), and sends the messages to a JMS server.

5 The JMS server puts the messages on a specified queue or a certain destination, called a
topic.

6 The JMS server stores the messages until any other JMS-compliant application reads and
removes them.

Message Oriented Middleware service providers:

Teradata
Database

Data Message

2425D007

IBM WebSphere MQ

Tibco EMS

BEA WebLogic JMS

Oracle AQ

SAP Net Weaver JMS

Java Message Service
Server

Teradata Access
Module for JMS

Data Message

Client Application

Fallback
Data File

Teradata Data
Connector

Teradata
Utilities:

BTEQ, Fastload,
MultiLoad,
or TPump
96 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Data Flow
Figure 8: Exporting with Teradata Export Utilities

Exporting from an ODBC-Compliant Data Source (Using Teradata PT)

The Teradata Access Module for JMS can also be transparently used with any Teradata Parallel
Transporter (PT) producer operator, such as the ODBC Operator, through the Teradata PT
DataConnector Operator. Figure 9 on page 98 is an overview of the data flow between any
ODBC-compliant data source and a JMS client application using Teradata Access Module for
JMS. In general, the process is as follows:

• Teradata PT ODBC Operator connects to an ODBC-compliant data source, for example,
Oracle, SQL Server, or DB2.

• The operator reads data close to the sources (from the same machine where Teradata PT is
running, as opposed to across a network).

• The operator feeds the data (via data stream) to Teradata PT Data Connector.

• Teradata PT Data Connector transfers the database records to Teradata Access Module for
JMS.

• Teradata Access Module for JMS uses the JMS connection calls to access configured JMS
administered objects, and connects to the JMS server.

• Teradata Access Module for JMS composes database records into messages (the export
utility defines the database record format), and sends the messages to a JMS server.

• The JMS server puts the messages on a specified queue or a certain destination, called a
topic.

• The JMS server stores the messages until any other JMS-compliant application reads and
removes them.

Data
Connector

Message
Queue/Topic

2425A018

Teradata
Export
Utilities

(BTEQ or
FastExport)

Teradata Access
Module
For JMS

JMS-Enabled Client
Application

Teradata
Database

Data Message
Teradata Tools and Utilities Access Module Reference 97

Chapter 5: Teradata Access Module for JMS
Data Flow
Figure 9: Exporting from ODBC-Compliant Data Sources

Messaging Models

Teradata Access Module for JMS supports both point-to-point and publisher-subscribe
messaging models, both of which use the concepts of sender and receiver. The following
information defines the two messaging models, then describes the roles of sender/receiver in
relation to imports and exports with Teradata Access Module for JMS.

Point-to-Point Messaging

A point-to-point messaging model is built on the concept of sender, receiver, and message
queue. Data messages are sent to a specific queue, then fetched and processed by a single
receiver. This model provides a one-to-one relationship between the sender and receiver.
There are no timing dependencies for sending or receiving messages. The sender and the
receiver operate independently.

Figure 10: Point-to-Point Messaging Model

Publish-Subscribe Messaging

A publish-subscribe messaging model is built around the concepts of topics, publishers, and
subscribers. Data messages are sent to a topic by a publisher (sender), then received by one or
more subscribers (receivers) of that topic. This model has a one-to-many relationship.

Message
Queue/Topic

2425A019

ODBC-
Compliant

Data
Sources

JMS-Enabled Client
Application

ODBC-
Driver

Interface

TPT
ODBC

Operator

TPT
Data

Connector

Data Message

Teradata Access
Module
For JMS

Send
Message

2425A010

Message
Queue ReceiverSender

Receive
Message
98 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Data Flow
Publishers and subscribers operate independently of each other, and they do not need to know
anything about each other.

A subscriber can either be durable or nondurable:

• A nondurable subscriber only gets messages that are published while it is connected.

• A durable subscriber gets all the messages that are published, including the ones published
while it is disconnected.

Figure 11: Publish-Subscribe Messaging Model

Component Roles During Data Loads

• For load jobs, the sender is a customer-supplied component responsible for the following:

• Format a data message that is defined by the Teradata load utility. The data message
type can either be a simple text message (Type TextMessage) or a stream of bytes (Type
ByteMessage).

• Place a data message on a specified queue or at certain destination, called a topic.

• Send a control message (zero-length message) to indicate the end of the message
stream.

• For load jobs, the receiver is Teradata Access Module for JMS, which is responsible for the
following:

• Perform a JNDI lookup to retrieve JMS-administered objects from the naming space.

• Establish communication with the JMS provider.

• Retrieve the data message from the queue or topic.

• Copy the data message to a fallback file for checkpoint and restart operations.

• Pass the data message to the Teradata load utility, which then processes and loads the
data into a Teradata Database.

• Continue retrieving data messages from the queue or topic until a control message
(zero-length message) is received, or until a time out is received that signals the end of
the message stream.

Component Roles During Data Exports

• For export jobs, the sender is Teradata Access Module for JMS, which is responsible for the
following:

2425A014

Topic

Receiver
Subsciber1

Receiver
Subsciber2

Sender
Publisher

Publish
Message

Receive
Message

Receive
Message
Teradata Tools and Utilities Access Module Reference 99

Chapter 5: Teradata Access Module for JMS
Interfaces
• Format a data message that is defined by the Teradata export utility. The data message
type can either be a simple text message (Type TextMessage) or a stream of bytes (Type
ByteMessage).

• Perform a JNDI lookup to retrieve JMS-administered objects from the naming space.

• Establish communication with the JMS provider.

• Place a data message on a specified queue/topic.

• Send a control message (zero-length message) to indicate the end of the message
stream.

• For export jobs, the receiver can be Teradata Access Module for JMS or any other JMS-
enabled application. The receiver is responsible for the following tasks:

• Perform a JNDI lookup to retrieve JMS-administered objects from the naming space.

• Establish communication with the JMS provider.

• Retrieve the data message from the queue/topic.

• Copy the data message to a fallback file for checkpoint and restart.

• Pass the data message to the Teradata load utility, which then processes and loads the
data into a JMS-enabled application.

• Continue fetching data messages from the queue or topic until a control message
(zero-length message) is received or a time out that signals the end of the message
stream.

Interfaces

Teradata Access Module for JMS can interface with a JMS provider or with the Teradata Data
Connector.

Interface with a JMS Provider

Teradata Access Module for JMS uses Java Message Service (JMS) to access a JMS provider.
The JMS is a Java API that allows applications to create, send, receive, and read data messages
between software components.

Following are the main parts of Teradata Access Module for JMS that interface with JMS
providers:

• JNDI Naming Service looks up naming and directory services by setting up initial context.

• Queue or Topic Connection Factory creates queue or topic connections with a JMS
provider.

• Queue or Topic Connection creates queue or topic session objects.

• Queue or Topic Session creates queue receiver, topic subscriber, queue sender, or topic
publisher objects.

• Queue Receiver or Topic Subscriber receives messages that are delivered to a queue or
topic during a load job.
100 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Interfaces
• Queue Sender or Topic Publisher sends messages from a queue or topic session during an
export job.

• Message Receiver processes messages from a queue receiver or topic subscriber during a
load job.

• Message Sender processes messages from a queue sender or topic publisher during an
export job.

Figure 12 shows an overview of Teradata Access Module for JMS processing.

Figure 12: Interface Components

Interface with the Data Connector

Teradata Access Module for JMS must provide a main function called PIDMMain(), which is
called by the Data Connector to request I/O operations. This function contains two
parameters:

void PIDMMain (pmiCmdBlock_t *Opts, void *OptParms)

The first parameter (Opts) specifies one of the access module functions in Table 14 on
page 102. The second parameter (OptParms) contains context specific information for each
of the functions specified in the table.

2425C009

Queue Receiver or
Topic Subscriber

Message Receiver

Queue Sender or
Topic Publisher

Message Sender

Queue/Topic
Connection Factory

JNDI Naming
Service

Queue/Topic
Connection

Queue/Topic Session

Load JobsExport Jobs
Teradata Tools and Utilities Access Module Reference 101

Chapter 5: Teradata Access Module for JMS
Initialization Strings
Initialization Strings

Following are the initialization strings for loading and exporting data using Teradata Access
Module for JMS.

Syntax

The initialization string consists of a series of keyword and value pairs separated by blanks.
Each keyword is preceded by a hyphen, and it is not case-sensitive. The value is either an
integer or a string. Keywords can be specified within the initialization string or in a file. See
“Access Module Calls” on page 19 for information about specific AXSMOD command or
command option syntax for each Teradata utility.

Table 14: PIDMMain’s Opts Parameter Values

Access Module Function Description

Access Module Initialization Initializes Teradata Access Module for JMS and parses the
initialization string.

Access Module Identification Identifies Teradata Access Module for JMS and version.

File Open Opens the queue or topic connection.

File Close Closes the queue or topic connection.

File Read Gets and processes data messages from a specified queue or
topic.

File Write Puts and processes data messages to a specified queue or
topic.

File Get Position Returns the current position of a data file for checkpoint and
restart purposes.

File Set Position Restart at a given point of a data file for checkpoint and
restart purposes.

Get Attribute Returns an attribute to the Teradata load/export utilities.
Primarily for exchanging information between Teradata
Access Module for JMS and the load/export utilities.

Put Attribute Sends an attribute to Teradata Access Module for JMS. This
is for exchanging information.

Shutdown Terminates the access module.
102 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Initialization Strings
Load Syntax

A

-help -paramfile <objectName>

-url <providerUrl>

B-qnm <queueName>A -qcf <queueConnectionFactoryName>-icf <initContextFactoryName>

C

-cid clientID-dnm <durableName> -transx <numberMessagesPerTrans>

B

D

-ckfile <objectName>-latency <seconds> -flush yes/no

C

E

-bksz <maxMsgSize>-tdm <yes/no> -rwait <maxSeconds>

D

2425C011

-tcf <topicConnectionFactoryName> -tnm <topicName>

F

-log <logObjectName>-logfill yes/no -tlf <yes/no>

E

G

-trcl <level> <filename>

F

G

- SECURITY_AUTHENTICATION <security_level> - SECURITY_PRINCIPAL <username>

H

H

- SECURITY_CREDENTIALS <password> - SECURITY_PROTOCOL <type>

I

Teradata Tools and Utilities Access Module Reference 103

Chapter 5: Teradata Access Module for JMS
Initialization Strings
Export Syntax

where:

A

- help

2425A020

- paramifle <objectName>

- url <providerUrl>

A - icf<initContextFactoryName> - qcf<queueConnectionFactoryName> - qnm<queueName>

- tcf<topicConnectionFactoryName> - tnm<topicName>

B

B

- quser <queuetopicConnectionUsername> - qpwd <queuetopicConnectionPassword>

C

C

- bksz <maxMsgSize> - transx <numberMessagePerTrans>

D

D

- pack <numberRecordsPerMessage> - trcl <level> <filename>

E

E

- log <logObjectName> - logfill yes/no

F

- tlf <yes/no>

F

- SECURITY_AUTHENTICATION <security_level> - SECURITY_PRINCIPAL <username>

G

G

- SECURITY_CREDENTIALS <password> - SECURITY_PROTOCOL <type>

H

Table 15: Export Syntax

Syntax Element Description

bksz <maxMsgSize> (Optional) Specifies the maximum message length in bytes. Default value
is 32,000. For example:

-bksz 1024

cid <clientID> (Optional) Specifies the unique client ID for the connection in a load job.
Use with durable subscriptions. For example:

-cid clientID

ckfile <objectName> (Optional) Specifies the name of the file that contains checkpoint data
from load jobs only. For example:

-ckfile sampleCheckpointFile

dnm <durableName> (Optional) Supplies the durable subscriber name for a load job. The
subscriber receives all published messages, including the ones published
while it is disconnected. For example:

-dnm sampleDurableName

flush <yes/no> (Optional) Ensures that all checkpoint data (from load jobs) is written to
media. Default value is no. For example:

-flush yes
104 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Initialization Strings
help (Optional) Displays a list of parameter keywords and valid values. For
example:

-help

icf <initContextFactoryName> (Required) Specifies the class name of the initial context factory. For
example:

-icf
com.ibm.websphere.naming.WsnInitialContextFactory
-icf weblogic.jndi.WLInitialContextFactory
-icf com.sun.jndi.fscontext.RefFSConextFactory

latency <seconds> Specifies the time delay between receiving a current load message and the
next message within a transaction, if transx is greater than 1. Default value
is five seconds. For example:

-latency 4

log <logObjectName> (Optional) Specifies the name of a log file or STDOUT. All messages
received from a queue or topic are displayed in the specified file. Default
value is no. For example:

-log myLogFile

logfill <yes/no> (Optional) Packs log records to minimize wasted disk space. Default value
is yes.

-logfill no

mesgtype <messageType> Specifies the type of export message. Valid values:

• Text

• Binary (default)

For example:

-text

pack <numberRecordsPerMessage> Specifies the number of records per message. For example:

-pack 10

paramfile <objectName> (Optional) Supplies the object name for a file that includes more
parameters. For example:

-paramfile myParmFile

qcf <queueConnectionFactoryName> Specifies the name of the queue connection factory. Required if tcf is not
specified.

For example:

-qcf sampleQCF

qnm <queueName> Specifies the queue name. Required if qcf is defined.

For example:

-qnm myQueue

Table 15: Export Syntax (continued)

Syntax Element Description
Teradata Tools and Utilities Access Module Reference 105

Chapter 5: Teradata Access Module for JMS
Initialization Strings
qpwd <queue/topicConnectionPassword> (Optional) Specifies the password to create the queue or topic connection.
For example:

-qpwd password

quser <queue/topicConnectionUsername> (Required if qpwd is specified.) Specifies the username for queue or topic
connection. For example:

-quser userName

rwait <maxSeconds> (Optional) Specifies the wait time in seconds if no load message is
immediately available. The default value is 1 second. Valid values for an
unlimited wait time are one of the following:

• 1 to 600 seconds, or

• minus 1.

For example:

-rwait 500
-rwait -1

SECURITY_AUTHENTICATION
<security_level>

(Optional) Context property that specifies the security level for data
transfer. The behavior is determined by the service provider. Valid values:

• none

• simple

• strong

For example:

-SECURITY_AUTHENTICATION none
-SECURITY_AUTHENTICATION simple
-SECURITY_AUTHENTICATION strong

SECURITY_CREDENTIALS <password> (Optional) Context property that specifies the credentials of the principal
for authenticating the caller to the service for data transfer. The value
depends on the authentication scheme of the service provider. For
example, it could be any of the following or more:

• a hashed password

• a clear-text password

• a key

• a certificate

SECURITY_PRINCIPAL <username> (Optional) Context property that specifies the identity of the principal for
authenticating the caller to the service for data transfer. The format
depends on the authentication scheme of the service provider.

SECURITY_PROTOCOL <type> (Optional) Specifies the security protocol for data transfer. The value is a
string determined by the service provider, such as ssl. For example:

-SERVICE_PROTOCOL ssl

tcf <topicConnectionFactoryName> (Required if qcf is not specified.) Provides the topic connection factory
name. For example:

-tcf sampleTCF

Table 15: Export Syntax (continued)

Syntax Element Description
106 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Session Character Sets
Session Character Sets

All Teradata utilities (except for BTEQ) notify Teradata Access Module for JMS about the
session character set they use. Specify the session character set name for each utility as follows:

• Teradata FastExport, Teradata MultiLoad, or Teradata TPump - Specify the -c character-
set-name parameter at runtime in the command line to set the session character set name.

• BTEQ or Teradata FastLoad - Specify the .SET SESSION CHARSET command in the
script.

• Teradata PT - Specify the USING CHARACTER SET <charset-id> option preceding the
DEFINE JOB statement in the script.

tdm <yes/no> (Optional) Terminates duplicate load messages. Default value is yes. For
example:

-tdm no

tlf <yes/no> (Optional) Specifies that a log failure will cause a fatal error. Default value
is yes. For example:

-tlf no

tnm <TopicName> (Required if tcf is defined.) Specifies the topic name. For example:

-tnm myTopic

transx <numberMessages> (Required) Specifies the number of messages in a transaction. For
example:

-transx 4

trcl <level><fileName> (Optional) Specifies the trace level and file name of diagnostic activities.
The trace level record these events:

• 1=No diagnostic trace

• 2=Job events

• 3=I/ O events

• 4=I/O buffers

• 5=Detailed trace information

The default trace level is 1.

-trcl 4 myFileName

url <providerUrl> (Required) Specifies the JNDI location of the administered objects. For
example:

-url iiop: //myhost:9001 (from IBM Webshere MQ)
-url t3://myhost:7001 (from BEA WebLogic JMS)
-url file:/support/jms/samplet3 (file system
context)

Table 15: Export Syntax (continued)

Syntax Element Description
Teradata Tools and Utilities Access Module Reference 107

Chapter 5: Teradata Access Module for JMS
Session Character Sets
Teradata Access Module for JMS uses a fixed mapping of Teradata session character sets to Java
character sets. This mapping (Table 16) is a default properties file, called charsets.properties, in
the installation folder of the access module. For a given Teradata session character set, the
corresponding Java character set is used to encode bytes sent to the message queue system, and
to decode bytes received from the queue system. You can add new character sets to the
properties file and edit existing mappings.

If ASCII is specified as the character set, Teradata Access Module for JMS uses the platform
default encoding. If that default encoding cannot represent certain characters in a platform-
specific byte sequence, character conversions might produce minor differences. If an exact
match is required, use the UTF8 session character set to avoid conversions between character
sets.

Table 16: Character Set Mapping

Teradata Session Character Set Java Character Set

ASCII ASCII

UTF8 UTF-8

UTF16 UnicodeBigUnmarked (for big-endian platforms)

UTF16 UnicodeLittleUnmarked (for little-endian platforms)

EBCDIC037_0E Cp037

EBCDIC273_0E Cp273

EBCDIC277_0E Cp277

HANGULEBCDIC933_1II Cp933

HANGULKSC5601_2R4 MS949

KANJIEBCDIC5026_0I Cp930

KANJIEBCDIC5035_0I Cp939

KANJIEUC_0U EUC_JP

KANJISJIS_0S MS932

KATAKANAEBCDIC CP930

LATIN1_0A ISO8859_1

LATIN1252_0A Cp1252

LATIN9_0A ISO8859_15_FDIS

SCHEBCDIC935_2IJ Cp935

SCHGB2312_1T0 EUC_CN

TCHBIG5_1R0 BIG5

TCHEBCDIC937_3IB Cp937
108 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Checkpoint Processing
Checkpoint Processing

If checkpointing is enabled, the access module reads messages from the queue, then copies the
data into a fallback file before delivering the data to the Data Connector. If the load utility
decides to restart at an earlier point in the data stream, it directs the Data Connector to issue
the File Set Position command to the access module. The module then supplies data from the
fallback data file until the restart is complete.

After a position request is made to the access module, additional processing by the client (and
probably the database) occurs. A checkpoint request is considered successful only after a
subsequent request from the client is received by the access module. A checkpoint followed by
a function request for a reposition is considered successful by virtue of the contents of the
position information provided at the reposition. Support for a previous checkpoint is not
removed until the most recent checkpoint is successful. This approach allows recovery from a
checkpoint failure.

When a reposition request immediately follows an open request, a restart is conducted. In this
case, one or more messages are retrieved from the checkpoint file before the messages are sent
back to the access module.

Only the load feature of Teradata Access Module for JMS supports checkpoint and restart
capability for data recovery. Checkpoint and restarts are not supported during exports.

Repeatability of Messages

After recovery from a checkpoint failure, it is possible that messages read by one process may
not be repeated to the same process in the same order because another process has read the
rolled back messages in the queue. All messages sent to the Teradata utility after the most
recent checkpoint request are rolled back into the message queue under the following
conditions:

• A reposition following a database recovery is requested

• The client process fails via an ABEND

If you require repeatability, you should establish a reserved queue name convention in which a
single reader process, such as TPump, uses the exclusive option to ensure that it is the only
reader of that queue. No other process should use that reserved queue name.

If the checkpoint file is populated and the first request made to the access module following
the opening of the named queue is a reposition, the first message returned is retrieved from
the checkpoint file. Otherwise, there is no effect because only a single record is maintained in
the checkpoint file. All other messages are implicitly rolled back in the case of a client ABEND.

Code Sample

Following is an example of an initialization function of the OptParms parameter for a load
job.
Teradata Tools and Utilities Access Module Reference 109

Chapter 5: Teradata Access Module for JMS
Messages
PIDMMain(pmiCmdBlock_t*opts, void*optParms)

//Initialization Function
opts.Reqtype = pmiPIDMOptInit;

strcpy (optParms.EyeCatcher, pmiEC_Init_t); //struct eyecatch string

//Pass initialization string to access module
strcpy (optParms.InitStr, InitStr);

optParms.InitStrL = strlen(optParms.InitStr); //Length of InitStr
optParms.StructLength=sizeof(optParms); //Total structure length
optParms.InterfaceVerNo=pmiInterfaceVersionD; //Header version number
of pmdcomt.h
optParms.InterfaceVerNoD=pmInterfaceVersion; //Header version number
of pmddamt.h

//File Read Function
opts.Reqtype=pmiPIDMOptRead;
strcpy(optParms.EyeCatcher, pmiEC_RW_t); //Stuct eyecatcher string

//Pointer to a buffer into which the access module is to return the data
block
optParms.Buffer=(char*)malloc(1024);

optParms.bufferLen=1024
optParms.StructLength=sizeof(optParms); //Total structure length

Messages

Table 17 is a numeric listing of the access module error messages that can be written in the
access module trace file. Many of the message descriptions cite access module functions that
are generated by the Data Connector API in response to client utility commands. For
information about these messages, see Teradata Tools and Utilities Access Module Programmer
Guide.

Table 17: Error Messages

Number Message Text Description/Response

9 The Access Module has
reached EOF.

The end-of-file character has been reached by the access
module.

15 Invalid Block_size
value: value

The value value is not a valid block size.

Revise the access module initialization string in the
utility job script to specify a valid block_size value.

18 Bad version number. The running utility was built using a different version of
the DataConnector other than the version that has been
invoked (loaded) at runtime.

Refer the problem to the client utility.
110 Teradata Tools and Utilities Access Module Reference

Chapter 5: Teradata Access Module for JMS
Messages
22 Invalid command option
in Init string.

An invalid access module command option was detected
in the provided access module initialization string.

Refer the problem to access module support.

24 Access Module for JMS
has received an
unsupported request
"mnemonic"(command
code) from the calling
software, "process
name". It is possible
that the calling
software version is
incompatible with this
Access Module.

The Client utility attempted an operation that is not
supported by the access module.

If it is available, the message text includes the standard
command mnemonic (mnemonic), along with the
decimal command code (code).

Possibly the Client utility is not able to use the access
module.

26 Access Module has not
been initialized.

A DataConnector function call other than for
initialization has been received before the
DataConnector was initialized via pmInit.

Refer the problem to the client utility.

30 Redundant initialize
calls

The access module has encountered another
initialization statement after being initialized.

33 An unrecognized
attribute name was
specified.

The Data Connector API issued one or more of the
following functions that are not implemented by the
access module:

• pmiPIDMOptPutA_A

• pmiPIDMOptGetA_A

• pmiPIDMOptPutF_A

• pmiPIDMOptGetF_A

Note: This message occurs frequently when using the
FastLoad, TPump, and MultiLoad utilities.

34 An unexpected critical
exception occurred in
the description.

General failure message.

Table 17: Error Messages (continued)

Number Message Text Description/Response
Teradata Tools and Utilities Access Module Reference 111

Chapter 5: Teradata Access Module for JMS
Messages
112 Teradata Tools and Utilities Access Module Reference

APPENDIX A

How to Read Syntax Diagrams

This appendix describes the conventions that apply to reading the syntax diagrams used in
this book.

Syntax Diagram Conventions

Notation Conventions

Paths

The main path along the syntax diagram begins at the left with a keyword, and proceeds, left
to right, to the vertical bar, which marks the end of the diagram. Paths that do not have an
arrow or a vertical bar only show portions of the syntax.

The only part of a path that reads from right to left is a loop.

Item Definition / Comments

Letter An uppercase or lowercase alphabetic character ranging from A through Z.

Number A digit ranging from 0 through 9.

Do not use commas when typing a number with more than 3 digits.

Word Variables and reserved words.

• UPPERCASE LETTERS represent a keyword.

Syntax diagrams show all keywords in uppercase, unless operating system
restrictions require them to be in lowercase.

• lowercase letters represent a keyword that you must type in lowercase, such as a
UNIX command.

• lowercase italic letters represent a variable such as a column or table name.

Substitute the variable with a proper value.

• lowercase bold letters represent a variable that is defined immediately
following the diagram that contains the variable.

• UNDERLINED LETTERS represent the default value.

This applies to both uppercase and lowercase words.

Spaces Use one space between items such as keywords or variables.

Punctuation Type all punctuation exactly as it appears in the diagram.
Teradata Tools and Utilities Access Module Reference 113

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Continuation Links

Paths that are too long for one line use continuation links. Continuation links are circled
letters indicating the beginning and end of a link:

When you see a circled letter in a syntax diagram, go to the corresponding circled letter and
continue reading.

Required Entries

Required entries appear on the main path:

If you can choose from more than one entry, the choices appear vertically, in a stack. The first
entry appears on the main path:

Optional Entries

You may choose to include or disregard optional entries. Optional entries appear below the
main path:

If you can optionally choose from more than one entry, all the choices appear below the main
path:

FE0CA002

A

A

FE0CA003

SHOW

FE0CA005

SHOW

VERSIONS

CONTROLS

FE0CA004

SHOW

CONTROLS
114 Teradata Tools and Utilities Access Module Reference

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Some commands and statements treat one of the optional choices as a default value. This
value is UNDERLINED. It is presumed to be selected if you type the command or statement
without specifying one of the options.

Strings

Strings appear in single quotes:

If the string text includes a single quote or a blank space, the string appears in double quotes:

Abbreviations

If a keyword or a reserved word has a valid abbreviation, the unabbreviated form always
appears on the main path. The shortest valid abbreviation appears beneath.

In the above syntax, the following formats are valid:

• SHOW CONTROLS

• SHOW CONTROL

Loops

A loop is an entry or a group of entries that you can repeat one or more times. Syntax
diagrams show loops as a return path above the main path, over the item or items that you can
repeat:

JC01A010
SHARE

READ

ACCESS

JC01A004

'msgtext'

JC01A005

''abc'd"

''abc d"

FE0CA042

SHOW

CONTROL

CONTROLS
Teradata Tools and Utilities Access Module Reference 115

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Read loops from right to left.

The following conventions apply to loops:

Excerpts

Sometimes a piece of a syntax phrase is too large to fit into the diagram. Such a phrase is
indicated by a break in the path, marked by (|) terminators on either side of the break. The
name for the excerpted piece appears between the terminators in boldface type.

Loop Convention Description

A maximum number of entries is
allowed.

The number appears in a circle on the return path.

In the example, you may type cname a maximum of 4 times.

A minimum number of entries is
required.

The number appears in a square on the return path.

In the example, you must type at least three groups of column
names.

A separator character is required
between entries.

The character appears on the return path.

If the diagram does not show a separator character, use one
blank space.

In the example, the separator character is a comma.

A delimiter character is required
around entries.

The beginning and end characters appear outside the return
path.

Generally, a space is not needed between delimiter characters
and entries.

In the example, the delimiter characters are the left and right
parentheses.

JC01B012

(

, 4

cname)

, 3
116 Teradata Tools and Utilities Access Module Reference

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
The boldface excerpt name and the excerpted phrase appears immediately after the main
diagram. The excerpted phrase starts and ends with a plain horizontal line:

Multiple Legitimate Phrases

In a syntax diagram, it is possible for any number of phrases to be legitimate:

In this example, any of the following phrases are legitimate:

• dbname

• DATABASE dbname

• tname

• TABLE tname

• vname

• VIEW vname

LOCKING excerpt

where_cond

A

cname

excerpt

JC01A014

A

HAVING con

,

col_pos

,

JC01A016

DATABASE

dbname

TABLE

tname

VIEW

vname
Teradata Tools and Utilities Access Module Reference 117

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions
Sample Syntax Diagram

Diagram Identifier

The alphanumeric string that appears in the lower right corner of every diagram is an internal
identifier used to catalog the diagram. The text never refers to this string.

JC01A018

viewnameCREATE VIEW AS

cname

A

C

CV

,

LOCKING

LOCK

ACCESSA

DATABASE

dbname

TABLE

tname

VIEW

vname

FOR

IN

B

SHARE

READ

WRITE

EXCLUSIVE

EXCL

MODE

FROMB SEL C

.aname

expr

,

tname

,

qual_cond

qual_cond

WHERE cond

cname

,

col_pos

,
GROUP BY

HAVING cond ;
118 Teradata Tools and Utilities Access Module Reference

APPENDIX B

Creating Schema Files

This appendix describes how to create a schema file that can be used as a data source by
Teradata OLE DB Access Module.

Define a Schema File

The format of a text file is determined by using a schema information file. This file, named
schema.ini, is always kept in the same directory as the text data source, and is required for
accessing fixed-length data. Use a schema.ini file when a text table contains DateTime,
Currency, Decimal data, or whenever more control is needed to handle table data.

Create a schema.ini file with entries to specify each of the following five characteristics for the
table that needs to be created.

• Text File Name - The first entry in the schema.ini file must be the name of the text source
file enclosed in square brackets.

• File Format - The file format option specifies how the text file fields are delimited or the
length of the fields in a file that uses a fixed length format, as shown in Table 18. If used,
the file format settings in the schema.ini file override file-by-file settings in the Windows
Registry.

• Field Names, Widths, and Types - Specify the field names in a character-delimited text file
in one the following ways:

Table 18: Schema File Formats

Format specifier Delimiter Description Format statement example

Tab Delimited Fields in the file are delimited by tabs Format=TabDelimited

CSV Delimited Fields in the file are delimited by
commas (comma-separated values)

Format=CSVDelimited

Custom Delimited Fields in the file are delimited by the
character specified in the Format
statement. All characters are allowed
(even the blank character) except the
double quote (")

Format=Delimited(custo
m charater)

Fixed Length Fields in the file are a fixed length Format=FixedLength
Teradata Tools and Utilities Access Module Reference 119

Appendix B: Creating Schema Files
Define a Schema File
• Set the ColNameHeader to True and include the field names in the first row of the
table.

For example, the following schema.ini file sets the ColNameHeader to true, keeping the
column definitions and names.

[Text_In_Out.txt]
ColNameHeader=True
Format=Delimited(#)
MaxScanRows=25
CharacterSet=ANSI

The ColNameHeader setting overrides the FirstRowHasNames setting.

• Set ColNameHeader to False and specify each column by number and designate the
column name, data type, and width for fixed-length types.

For example, the following schema.ini file sets the ColNameHeader to false and
redefines the columns.

[Text_In_Out.txt]
Format=Delimited(#)
ColNameHeader=False
MaxScanRows=25
CharacterSet=ANSI
Col1=SOR Char Width 255
Col2=ID_Integer
Col3=CREATE_DT Date
Col4=FREETEXT LongChar
Col5=EOR Char Width 255

The ColNameHeader setting overrides the FirstRowHasNames setting.

• Use the MaxScanRows option to indicate how many rows to scan when determining
the column types. If MaxScanRows is set to zero, the entire file is scanned.

The MaxScanRows setting in the schema.ini file overrides the setting file by file.

• Use the column number (Coln) option. This option is required for fixed-length files; it
is optional for character-delimited files.

Coln=ColumnName type [width #]
Table 19 describes each part of the Coln statement. The following example shows the
schema.ini entries for two fields. The fields are specified as the fifth and sixth in the row
format, with PartName defined as a text field with a width of ten, and PartNumber also
defined as a text field, with a width of 30.

Col[5]=PartNumber text width[10]
Col[6]=PartName text width[30]

Table 19: Coln Statement Parameters

Parameter Description

ColumnName Text name of the column. If the column name contains embedded
spaces, enclose them in double quotation marks.
120 Teradata Tools and Utilities Access Module Reference

Appendix B: Creating Schema Files
Define a Schema File
• Character Sets - Two character sets are available: ANSI and OEM. This setting
overrides the setting in the Windows Registry. The following code sample sets the
character set to ANSI:

CharacterSet=ANSI

• Currency Data Formats and Conversions - Table 20 lists the settings and valid values
for formatting currency data.

Note: If any entry is omitted, the default value in the Windows Control Panel is used.

type MicroSoft Jet data types:

• bit

• byte

• short

• long

• currency

• single

• double

• datetime

• text

• memo

ODBC data types

• char (same as text)

• float (same as double)

• integer (same as short)

• longchar (same as memo)

• date date format

width Literal string value that specifies the width of the column (required
for fixed-length files and optional for character-delimited files.

Integer value that designates the width of the column. Required if
width is specified.

Table 20: Data Formats and Descriptions

Data Format Description

CurrencyDigits Specifies the number of digits in the fractional part of a
currency amount.

CurrencyDecimalSymbol Set to any single character that separates the whole from the
fractional part of a currency amount.

CurrencyNegFormat Set to one of the following values:

• -$1, $-1, $1-, -1$, 1-$, or 1$-

• Formats with one character separation:
-1 $, -$ 1, 1 $-, $ 1-, $ -1, or 1- $

• Formats with parentheses: ($1) or (1$)

• Format with parentheses and one character separation:
($ 1) or (1 $)

Note: These examples use the dollar sign as a symbol value.
Use the CurrencySymbol format to set the symbol value.

Table 19: Coln Statement Parameters (continued)

Parameter Description
Teradata Tools and Utilities Access Module Reference 121

Appendix B: Creating Schema Files
Define a Schema File
For more information about the settings in a schema.ini file, go to:
search.msdn.microsoft.com/search/default.aspx?siteId=0&tab=0&query=schema.ini

CurrencyPosFormat Set to one of the following values:

• Currency symbol prefix with no separation ($1)

• Currency symbol suffix with no separation (1$)

• Currency symbol prefix with one character separation
($ 1)

• Currency symbol suffix with one character separation (1 $)

CurrencySymbol Specifies the currency symbol to use for currency values in the
text file.

CurrencyThousandSymbol Indicates the single-character symbol to use for separating
currency values in the text file by thousands.

DateTimeFormat Specifies a format string used for all dates and times. If set, all
the date and time fields in the load or export job are handled
with the same format. If not specified, the Windows Control
Panel short date picture and time options are used.

Note: All Microsoft Jet formats are supported except A.M. and
P.M.

DecimalSymbol Set to any single character used to separate the integer from the
fractional part of a number.

NumberDigits Provides the number of decimal digits in the fractional portion
of a number.

NumberLeadingZeros Set to specify if a decimal value less than one and greater than
negative one should contain leading zeros. Valid values are
False (no leading zeros) or True (insert leading zeros).

Table 20: Data Formats and Descriptions

Data Format Description
122 Teradata Tools and Utilities Access Module Reference

http://search.msdn.microsoft.com/search/default.aspx?siteId=0&tab=0&query=schema.ini
http://search.msdn.microsoft.com/search/default.aspx?siteId=0&tab=0&query=schema.ini

Glossary

A

application programming interface (API) The calling conventions by which an application
program accesses the operating system and other services. An API is defined at source code
level and provides a level of abstraction between the application and the kernel to ensure the
portability of code. May also provide an interface between a high-level language and lower-
level services.

B

Basic Teradata Query (BTEQ) A general-purpose, command-based program that allows
users on a workstation to communicate with one or more Teradata Database systems, and to
format reports for both print and screen output. A Teradata product offering.

C

client module Any problem solving application that requires conventional I/O support.

D

Domain Name Services (DNS) Data query service chiefly used on the Internet for
translating hostnames into Internet addresses. Also, the style of hostname used on the
Internet, though such a name is properly called a fully qualified domain name. DNS can be
configured to use a sequence of name servers, based on the domains in the name being looked
for, until a match is found.

F

FIFO First in, first out An access method for a queue data structure pertaining to how data
is loaded and retrieved.

J

Java Message Service (JMS) Java Message Oriented Middleware (MOM) application
programming interface (API) for sending messages between two or more clients. The main
elements of a JMS system include provider, client, producer, consumer, message, queue and
topic elements.

Java Naming Directory Interface (JNDI) An API that allows clients to find data and objects
via a name independent of the underlying implementation. An JNDI can also specify a service
provider interface (SPI) that allows directory service implementations to be plugged into a
framework. The vendor can implement the service as a server, a flat file, or a database.
Teradata Tools and Utilities Access Module Reference 123

Glossary
Java virtual machine (JVM) A specification for software which interprets Java programs
that have been compiled into byte-codes, and usually stored in a .class file. The JVM
instruction set is stack-oriented with variable instruction length. The JVM itself is written in C
and can be ported to run on most platforms. It needs thread support and I/O (for dynamic
class loading). The Java byte-code is independent of the platform. There are also hardware
implementations of the JVM.

J2EE Java 2 Platform, Enterprise Edition

J2SE Java 2 Platform, Standard Edition

M

MOM Message Oriented Middleware is a category of inter-application communication
software that relies on asynchronous message passing as opposed to a request and response
relationship. Most MOM software is based around a message queue system, although some
implementations rely on a broadcast or multicast message system.

N

non-partitioned primary index (NPPI) Used in full table scans. See partitioned primary
index (PPI).

O

open database connectivity (ODBC) An application programming standard that defines
common database access mechanisms to simplify the exchange of data between a client and
server. ODBC-compliant applications connect with a database through the use of a driver that
translates the application’s ODBC commands into database syntax.

OLE DB A set of Microsoft COM interfaces that allow uniform and consistent access to
diverse data sources.

OLE DB Access Module See Teradata OLE DB Access Module.

OLE DB Provider A software module that exposes OLE DB interfaces to allow access to a
specific data source. For example, "Microsoft OLE DB Provider for SQL Server" is an OLE DB
provider that provides access to data located in a Microsoft SQL Server database.

OleLoad The GUI for the Teradata OLE DB Access Module, used to create, view, and edit
.amj files. Teradata OleLoad can launch a Teradata utility.

P

partitioned primary index (PPI) An indexing mechanism in Teradata Database that
improves performance for large tables when queries that specify a range constraint are
submitted. PPI allows for the reduction of the number or rows processed by using partition
elimination.
124 Teradata Tools and Utilities Access Module Reference

Glossary
S

small computer system interface (SCSI) A popular processor-independent standard, via a
parallel bus, for system-level interfacing between a computer and intelligent devices including
hard disks, floppy disks, CD-ROM, printers, scanners, and more.

structured query language (SQL) An industry-standard language for creating, updating,
and querying relational database management systems. Originally developed by IBM, it is
often embedded in general-purpose programming languages.

T

Teradata OLE DB Access Module An access module created by Teradata that provides a
basic input/output interface between Teradata load and export utilities and OLE DB data
sources. It supports load operations to and export operations from a Teradata Database.

Teradata OLE DB Access Module allows you to select a data source from OLE DB data sources,
create and save an access module job (.amj) file, and then use the .amj file to load the source
data to a Teradata Database.

U

universal naming convention (UNC) Used in IBM PC networking to completely specify a
directory on a file server.
Teradata Tools and Utilities Access Module Reference 125

Glossary
126 Teradata Tools and Utilities Access Module Reference

Index

Symbols
.amj files 45

file format 46
opening 40

A
access modules

defined 17
linkages, diagram 18
Named Pipes Access Module 56
Teradata WebSphere MQ Access Module 79
version identification 20

Advanced Settings, Teradata OLE DB Access Module 29
ASCII

Teradata Access Module for JMS 108
Teradata OLE DB Access Module 43

attributes, missing 52

B
batch mode, Teradata OLE DB Access Module 32
block_size parameter, Named Pipes Access Module 76
BTEQ

required by Teradata OLE DB Access Module 23
troubleshooting 52
with Teradata OLE DB Access Module 33, 38

bulk loads, Teradata OLE DB Access Module 29

C
channel name, Teradata WebSphere MQ Access Module 88
character sets

Teradata Access Module for JMS 107
Teradata OLE DB Access Module 30

checkpoint intervals, Teradata OLE DB Access Module 30
checkpoint operation, Teradata OLE DB Access Module 45
checkpoints, Teradata Access Module for JMS 109
CHNL 88
CKFILE, Teradata WebSphere MQ Access Module 85
code sample, Teradata Access Module for JMS 109
confirm_fallback_deletion parameter, Named Pipes Access

Module 76
connection factory 100
connection information, Teradata OLE DB Access Module 27

D
Data Connector

Teradata Access Module for JMS 95, 101
Teradata Parallel Transporter 20

data flow, Teradata OLE DB Access Module 22
data types, Teradata OLE DB Access Module 40, 44
DBTYPE 40
default selections, Teradata OLE DB Access Module 39
diagnosing exceptions 53
duplicate rows 25

E
editing tables, Teradata OLE DB Access Module 29
error messages, Teradata Access Module for JMS 110
exceptions, diagnosing, 53
export operation

about access module operations 22
BTEQ and Teradata OLE DB Access Module 33, 38
FastExport and Teradata OLE DB Access Module 34
Teradata Access Module for JMS 93
Teradata PT and Teradata OLE DB Access Module 34, 39
to and from Teradata Database 26, 28
with OleLoad 24

exporting data
Teradata Access Module for JMS 96
TPT and Teradata Access Module for JMS 97

F
Fallback data file, Named Pipes Access Module 64
Fallback level restriction, Named Pipes Access Module 64
fallback_directory parameter, Named Pipes Access Module

76
fallback_file parameter, Named Pipes Access Module 76
FastExport

required by Teradata OLE DB Access Module 23
with Teradata OLE DB Access Module 34

FastLoad
required by Teradata OLE DB Access Module 23
with Teradata OLE DB Access Module 35

File Close, Teradata Access Module for JMS 102
File Get Position, Teradata Access Module for JMS 102
File Open, Teradata Access Module for JMS 102
File Read, Teradata Access Module for JMS 102
File Set Position, Teradata Access Module for JMS 102
File Write, Teradata Access Module for JMS 102
Teradata Tools and Utilities Access Module Reference 127

Index
functions, Teradata OLE DB Access Module 40

G
Get Attribute, Teradata Access Module for JMS 102

I
identification function, for version information 20
importing data, Teradata Access Module for JMS 95
index updates, Teradata OLE DB Access Module 29
Infomix 52
initialization string

Named Pipes Access Module 75
Teradata Access Module for JMS 102
Teradata OLE DB Access Module 32

installation information 80

J
Java character sets, Teradata Access Module for JMS 108
Java Message Service (JMS) 93
JMS Access Module . See Teradata Access Module for JMS
JMS providers, interface with Teradata 100
JNDI namespace 95, 99, 100
job files

format for access module jobs 45
opening previous access module jobs 40

K
Kanji, troubleshooting 52
KANJISJIS_OS 43

L
LATIV1252_0A 43
launching jobs, Teradata OLE DB Access Module 31
level field, Named Pipes Access Module 66
load operation

about access module operations 22
FastLoad and Teradata OLE DB Access Module 35
MultiLoad and Teradata OLE DB Access Module 36
multiset tables 25
Teradata Access Module for JMS 93
to Teradata Database 28
TPump and Teradata OLE DB Access Module 37
with OleLoad 24
with Teradata Database 25
with Teradata utilities 35

locked access, troubleshooting 53
Log file, Named Pipes Access Module 65
log file, Named Pipes Access Module 65
log tables, Teradata OLE DB Access Module 30
log_directory parameter, Named Pipes Access Module 77
log_level parameter, Named Pipes Access Module 77

M
mapping, Teradata Access Module for JMS 108
MaxScanRows option,OLE DB Access Module 120
Message Oriented Middleware (MOM) 95
message producer 101
message receiver 101
message-number field, log file, Named Pipes Access Module

66
messaging

models 98
overview of data flow 95

Microsoft Data Link Properties, Teradata OLE DB Access
Module 25

Microsoft OLE DB Providers, with Teradata OLE DB Access
Module 23

modes, Teradata OLE DB Access Module 23
multi-code, troubleshooting 52
MultiLoad

required by Teradata OLE DB Access Module 23
with Teradata OLE DB Access Module 36

multiset tables 25

N
Named Pipes Access Module

description 57
fallback level restriction 64
initialization string 75
log file description 65
open pipes restriction 65
reader process 59
restarting a job 62
Teradata PT restrictions 65
UNIX 60
version identification 20
writer process 58
writer process, Teradata PT 59

naming conventions, Teradata Access Module for JMS 94
noprompt, Teradata OLE DB Access Module 32

O
ODBC drivers, Teradata OLE DB Access Module 23
ODBC, data source for JMS 97
OLE DB data types 40
OLE DB Providers 23
OleLoad

defaults 39
selecting sources and targets 24

Open pipes restriction, Named Pipes Access Module 65
operating systems

Named Pipes Access Module 56
Teradata Access Module for JMS 93
Teradata OLE DB Access Module 23
128 Teradata Tools and Utilities Access Module Reference

Index
OptParms 101
Opts 101

P
parameters, Teradata Access Module for JMS 101
performance, Teradata OLE DB Access Module 50
PERIOD data type 41
PIDMMain() 20, 101, 110
Point-to-Point messaging model 98
process field, Named Pipes Access Module 66
product version numbers 3, 79
Publish-Subscribe messaging model 98
Put Attribute, Teradata Access Module for JMS 102

Q
queue, sender and receiver 100
queue/topic connection 100

R
Reader process, Named Pipes Access Module 59
receiver, load and export jobs 99
referential integrity, Teradata OLE DB Access Module 29
requirements, Teradata OLE DB Access Module 23
restarts

Teradata Access Module for JMS 109
Teradata OLE DB Access Module 45

restoring defaults, Teradata OLE DB Access Module 39
roles, JMS jobs 99

S
schema.ini file

code sample 120
ColNameHeader option 119
FirstRowHasNames option 120
location 119
MaxScanRows option 120

scripts, Teradata OLE DB Access Module 31
sender, load and export jobs 99
server name, Teradata WebSphere MQ Access Module 89
session character sets

Teradata Access Module for JMS 107
Teradata OLE DB Access Module 43

sessions, Teradata Access Module for JMS 100
setting load options, Teradata OLE DB Access Module 29
Shutdown, Teradata Access Module for JMS 102
signature_check parameter, Named Pipes Access Module 77
specifying log tables, Teradata OLE DB Access Module 29
SRVR 89
standard output file, Teradata WebSphere MQ Access

Module 82
syntax

how to read 113
Teradata Access Module for JMS 102
Teradata OLE DB Access Module 32

T
targets, Teradata OLE DB Access Module 24
Teradata Access Module for JMS

overview 93
version identification 20

Teradata OLE DB Access Module
about exports 22
about loads 22
Advanced Settings 29
batch 32
bulk loads 29
character sets 43
checkpoints and restarts 45
creating a schema.ini file 119
data flow 22
data types 40, 44
export operation 33
from a Teradata utility 33, 35
functions 40
improving performance 50
index updates 29
initialization string 32
job files 45
launching a job 31
load operation 35
loading 28
modes 23
moving data with 24
noprompt mode 32
open saved jobs 40
overview 21
referential integrity checks 29
scripts 31
selecting sources and targets 24
syntax 32
system requirements 23
version identification 20

Teradata PT
Named Pipes Access Module, restrictions 65
Teradata OLE DB Access Module 34, 39
WebSphere MQ Access Module 79

Teradata utilities, with Teradata OLE DB Access Module 23,
33

Teradata utilities, withTeradata OLE DB Access Module 35
Teradata WebSphere MQ Access Module 79

channel name 88
CKFILEkeyword 85
server name 89
Teradata Parallel Transporter version 79
Teradata Tools and Utilities Access Module Reference 129

Index
version identification 20
text field, Named Pipes Access Module 66
text files, loading in Teradata OLE DB Access Module 25
time data types, Teradata OLE DB Access Module 44
timestamp

Named Pipes Access Module 66
Teradata OLE DB Access Module 44

topic publisher 100
topic subscriber 100
TPump

required by Teradata OLE DB Access Module 23
with Teradata OLE DB Access Module 37

transferring data, Teradata OLE DB Access Module 24
troubleshooting

BTEQ 52
inaccessible data 52
Informix 52
Kanji 52
missing attributes 52
multi-code pages 52
server data type 52
unexpected exceptions 52
Unicode 52

U
Unicode

Teradata OLE DB Access Module 43
troubleshooting 52

Universal Naming Convention, Named Pipes Access Module
62

UTF16, Teradata Access Module for JMS 108
UTF-8

for copying tables 52
Teradata OLE DB Access Module 43

UTF8, Teradata Access Module for JMS 108

V
VARCHAR constraints, Teradata OLE DB Access Module 42
version numbers 3, 23, 79

W
writer process, Named Pipes Access Module 58
130 Teradata Tools and Utilities Access Module Reference

	Preface
	Purpose
	Audience
	Supported Releases
	Prerequisites
	Changes to This Book
	Additional Information

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Overview
	Supported Access Modules
	Supported Teradata Utilities
	Access Module Calls
	Client Utility Commands

	Data Connector API
	Version Identification
	Error Messages
	Session Character Sets

	Chapter 2 Teradata OLE DB Access Module
	Overview
	About Load Operations
	About Export Operations
	About Operating Modes

	Operating Requirements
	System Prerequisites

	Loading and Exporting with OleLoad
	Step 1 - Select a Data Source and Target
	Step 2 - Specify Advanced Settings [optional]
	Step 3 - Launch a Script

	Loading and Exporting at the Command Prompt
	About the Access Module Initialization String
	Starting an Access Module Export Job Without Teradata OleLoad
	Starting an Access Module Load Job from a Teradata Utility

	Restoring Default Selections
	Access Module Functions
	Data Type Mapping
	VARCHAR Constraints
	Character Set Support
	Returned Data Format
	Date and Time Data Types
	Checkpoints and Restarts
	Job Files

	Improving Performance
	Database Factors
	Access Module Factors

	Troubleshooting
	Attributes Missing
	Informix Not Available
	Kanji Cannot be Loaded with BTEQ
	Multi-Code Pages
	Server Data Type is Always Set to Unicode
	Inaccessible Data After Errors
	Unexpected Exceptions

	Chapter 3 Named Pipes Access Module
	Supported Operating Systems
	Supported Teradata Utilities
	Access Module Names
	Data Flow
	With Load and Unload Utilities
	With Teradata Parallel Transporter Infrastructure

	Using Teradata Named Pipes Access Module
	With Client Load and Unload Utilities
	For Windows

	Restarting a Job
	With Client Load and Unload Utilities
	With Teradata Parallel Transporter

	Operational Considerations
	Fallback Data File Space Requirements
	Deleting the Fallback Data File
	Fallback Level Restriction
	Deleting the Log File
	Open Pipes Restriction
	Teradata Parallel Transporter Restrictions

	Named Pipes Access Module Log File
	Name and Location
	Format
	Messages
	WIN32 Named Pipes API

	Initialization String
	Function
	Syntax
	Specifying Directory Name on Windows

	Chapter 4 Teradata WebSphere MQ Access Module
	Supported Operating Systems
	Installation

	Access Module Name
	Features
	Standard Output Files

	Data Flow
	Initialization String
	Syntax

	Checkpoint Processing
	Repeatability of Messages

	MVS JCL Requirements

	Chapter 5 Teradata Access Module for JMS
	Supported Platforms and Teradata Utilities
	Access Module Names
	Data Flow
	Importing Data
	Exporting with Teradata Export Utilities
	Exporting from an ODBC-Compliant Data Source (Using Teradata PT)
	Messaging Models

	Interfaces
	Interface with a JMS Provider
	Interface with the Data Connector

	Initialization Strings
	Syntax

	Session Character Sets
	Checkpoint Processing
	Repeatability of Messages

	Code Sample
	Messages

	Appendix A How to Read Syntax Diagrams
	Syntax Diagram Conventions
	Notation Conventions
	Paths
	Required Entries
	Optional Entries
	Strings
	Abbreviations
	Loops
	Excerpts
	Multiple Legitimate Phrases
	Sample Syntax Diagram
	Diagram Identifier

	Appendix B Creating Schema Files
	Define a Schema File

	Glossary
	Index

