
Teradata Archive/Recovery Utility
Reference

Release 12.00.00
B035-2412-067A

July 2007

The product or products described in this book are licensed products of Teradata Corporation or its affiliates.

Teradata, BYNET, DBC/1012, DecisionCast, DecisionFlow, DecisionPoint, Eye logo design, InfoWise, Meta Warehouse, MyCommerce,
SeeChain, SeeCommerce, SeeRisk, Teradata Decision Experts, Teradata Source Experts, WebAnalyst, and You’ve Never Seen Your Business Like
This Before are trademarks or registered trademarks of Teradata Corporation or its affiliates.

Adaptec and SCSISelect are trademarks or registered trademarks of Adaptec, Inc.

AMD Opteron and Opteron are trademarks of Advanced Micro Devices, Inc.

BakBone and NetVault are trademarks or registered trademarks of BakBone Software, Inc.

EMC, PowerPath, SRDF, and Symmetrix are registered trademarks of EMC Corporation.

GoldenGate is a trademark of GoldenGate Software, Inc.

Hewlett-Packard and HP are registered trademarks of Hewlett-Packard Company.

Intel, Pentium, and XEON are registered trademarks of Intel Corporation.

IBM, CICS, DB2, MVS, RACF, Tivoli, and VM are registered trademarks of International Business Machines Corporation.

Linux is a registered trademark of Linus Torvalds.

LSI and Engenio are registered trademarks of LSI Corporation.

Microsoft, Active Directory, Windows, Windows NT, and Windows Server are registered trademarks of Microsoft Corporation in the United
States and other countries.

Novell and SUSE are registered trademarks of Novell, Inc., in the United States and other countries.

QLogic and SANbox trademarks or registered trademarks of QLogic Corporation.

SAS and SAS/C are trademarks or registered trademarks of SAS Institute Inc.

SPARC is a registered trademarks of SPARC International, Inc.

Sun Microsystems, Solaris, Sun, and Sun Java are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries.

Symantec, NetBackup, and VERITAS are trademarks or registered trademarks of Symantec Corporation or its affiliates in the United States
and other countries.

Unicode is a collective membership mark and a service mark of Unicode, Inc.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS-IS” BASIS, WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION
MAY NOT APPLY TO YOU. IN NO EVENT WILL TERADATA CORPORATION BE LIABLE FOR ANY INDIRECT, DIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS OR LOST SAVINGS, EVEN IF EXPRESSLY ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

The information contained in this document may contain references or cross-references to features, functions, products, or services that are
not announced or available in your country. Such references do not imply that Teradata Corporation intends to announce such features,
functions, products, or services in your country. Please consult your local Teradata Corporation representative for those features, functions,
products, or services available in your country.

Information contained in this document may contain technical inaccuracies or typographical errors. Information may be changed or updated
without notice. Teradata Corporation may also make improvements or changes in the products or services described in this information at any
time without notice.

To maintain the quality of our products and services, we would like your comments on the accuracy, clarity, organization, and value of this
document. Please e-mail: teradata-books@lists.teradata.com

Any comments or materials (collectively referred to as “Feedback”) sent to Teradata Corporation will be deemed non-confidential. Teradata
Corporation will have no obligation of any kind with respect to Feedback and will be free to use, reproduce, disclose, exhibit, display, transform,
create derivative works of, and distribute the Feedback and derivative works thereof without limitation on a royalty-free basis. Further, Teradata
Corporation will be free to use any ideas, concepts, know-how, or techniques contained in such Feedback for any purpose whatsoever, including
developing, manufacturing, or marketing products or services incorporating Feedback.

Copyright © 1997-2007 by Teradata Corporation. All Rights Reserved.

mailto:teradata-books@lists.teradata.com

Teradata Archive/Recovery Utility Reference 3

Preface

Purpose

This book provides information about Teradata Archive/Recovery Utility (Teradata ARC),
which is a Teradata® Tools and Utilities product. Teradata Tools and Utilities is a group of
products designed to work with Teradata Database.

Teradata ARC writes and reads sequential files on a Teradata client system to archive, restore,
recover, and copy Teradata Database table data. Through its associated script language, it also
provides an interface between Teradata’s Open Teradata Backup (OTB) solutions and the
Teradata Database.

Audience

This book is intended for use by:

• System administrators

• Database administrators

• Other technical personnel responsible for maintaining a Teradata Database

Supported Releases

This book supports the following releases:

• Teradata Database 12.00.00

• Teradata Tools and Utilities 12.00.00

• Teradata ARC 12.00.00

Note: See “Verifying Teradata ARC Version Number” on page 15 to verify the Teradata
ARC version number.

To locate detailed supported-release information:

1 Go to www.info.teradata.com.

2 Navigate to General Search>Publication Product ID.

3 Enter 3119.

4 Open the version of the Teradata Tools and Utilities ##.##.## Supported Versions
spreadsheet associated with this release.

http://www.info.teradata.com

Preface
Prerequisites

4 Teradata Archive/Recovery Utility Reference

The spreadsheet includes supported Teradata Database versions, platforms, and product
release numbers.

Prerequisites

The following prerequisite knowledge is required for this product:

• Basic computer technology

• NCR system hardware

• Teradata Database

• System console environment

• X Windows

Changes to This Book

The following changes were made to this book in support of the current release. Changes are
marked with change bars. For a complete list of changes to the product, see the Release
Definition associated with this release.

Additional Information

Additional information that supports this product and Teradata Tools and Utilities is available
at the web sites listed in the table that follows. In the table, mmyx represents the publication
date of a manual, where mm is the month, y is the last digit of the year, and x is an internal
publication code. Match the mmy of a related publication to the date on the cover of this book.
This ensures that the publication selected supports the same release.

Date and Release Description

July 2007
12.00.00

• Added online archive logging functionality with LOGGING ONLINE
ARCHIVE ON and LOGGING ONLINE ARCHIVE OFF.

• Removed support for ASF2 Tape Reader.

• Added DBC.Dependency to Table 3 on page 29.

• Clarified concurrent use of locks during archive.

• Clarified that Teradata ARC locks are HUT locks.

• Added DBSERROR command line parameter.

• Added note that not all DBC tables are archived.

• Added ONLINE and KEEP LOGGING options to ARCHIVE.

• Clarified that MP-RAS and Linux support exists for IOPARM and
IOMODULE.

Preface
Additional Information

Teradata Archive/Recovery Utility Reference 5

Type of Information Description Access to Information

Release overview

Late information

Use the Release Definition for the following
information:

• Overview of all of the products in the
release

• Information received too late to be
included in the manuals

• Operating systems and Teradata
Database versions that are certified to
work with each product

• Version numbers of each product and
the documentation for each product

• Information about available training
and the support center

1 Go to http://www.info.teradata.com/.

2 Select the General Search check box.

3 In the Publication Product ID box, type 2029.

4 Click Search.

5 Select the appropriate Release Definition from
the search results.

Additional product
information

Use the Teradata Information Products
Publishing Library site to view or download
specific manuals that supply related or
additional information to this manual.

1 Go to http://www.info.teradata.com/.

2 Select the Teradata Data Warehousing check box.

3 Do one of the following:

• For a list of Teradata Tools and Utilities
documents, click Teradata Tools and Utilities
and then select a release or a specific title.

• Select a link to any of the data warehousing
publications categories listed.

Specific books related to Teradata ARC are as
follows:

• Data Dictionary
B035-1092-mmyx

• Messages
B035-1096-mmyx

• Open Teradata Backup Release Definition
B035-3114-mmyx

• Teradata Call-Level Interface Version 2 Reference
for Network-Attached Systems
B035-2418-mmyx

• Teradata Tools and Utilities Installation Guide for
Microsoft Windows
B035-2407-mmyx

• Teradata Tools and Utilities Installation Guide for
IBM z/OS
B035-2458-mmyx

• Teradata Tools and Utilities Installation Guide for
IBM VM
B035-2422-mmyx

• Teradata Tools and Utilities Installation Guide for
UNIX and Linux
B035-2459-mmyx

http://www.info.teradata.com/
http://www.info.teradata.com/

Preface
Additional Information

6 Teradata Archive/Recovery Utility Reference

CD-ROM images Access a link to a downloadable CD-ROM
image of all customer documentation for
this release. Customers are authorized to
create CD-ROMs for their use from this
image.

1 Go to http://www.info.teradata.com/.

2 Select the General Search check box.

3 In the Title or Keyword box, type CD-ROM.

4 Click Search.

Ordering
information for
manuals

Use the Teradata Information Products
Publishing Library site to order printed
versions of manuals.

1 Go to http://www.info.teradata.com/.

2 Select the How to Order check box under Print &
CD Publications.

3 Follow the ordering instructions.

General information
about Teradata

The Teradata home page provides links to
numerous sources of information about
Teradata. Links include:

• Executive reports, case studies of
customer experiences with Teradata,
and thought leadership

• Technical information, solutions, and
expert advice

• Press releases, mentions, and media
resources

1 Go to Teradata.com.

2 Select a link.

Type of Information Description Access to Information

http://www.info.teradata.com/
http://www.info.teradata.com/
http://www.teradata.com

Teradata Archive/Recovey Utility Reference 7

Table of Contents

Preface. .3

Purpose .3

Audience .3

Supported Releases .3

Prerequisites .4

Changes to This Book. .4

Additional Information .4

Chapter 1:
Introduction . 15

What is Teradata ARC?. 15

Platform Support . 15

Verifying Teradata ARC Version Number . 15

Uses of Teradata ARC . 17

What is ARCMAIN? . 17

Starting ARCMAIN. 17

Starting ARCMAIN from MVS . 18

Starting ARCMAIN from VM . 19

Starting ARCMAIN from Linux, MP-RAS, and Windows 2000/XP/Server 2003 20

Canceling Teradata ARC . 22

Sample Teradata ARC Scripts . 22

Data Extension Modules . 23

Chapter 2:
Archive/Recovery Operations . 25

Database DBC . 25

Restoring . 27

Database SYSUDTLIB . 27

Archiving. 27

Restoring . 27

Table of Contents

8 Teradata Archive/Recovey Utility Reference

Copying. .27

Deleting. .28

Archiving Tables and Databases .28

Concurrency Control. .29

Archiving With All AMPs Online. .29

Archiving by Cluster .35

Archiving With Offline AMPs .36

Archiving Large Objects (LOBs). .37

Archiving Non-Hashed and Partially Loaded Tables .37

Encrypting Archived Data. .37

Archiving Online. .38

Determining Whether Online Archive Logging is in Use .38

Restoring Tables and Databases. .39

Conditions Needed for a Restore Operation .39

Considerations Before Restoring Data. .40

Restoring the Database DBC. .41

Restoring a User Database or Table .42

Restoring With All AMPs Online .46

Restoring with a Specific-AMP Archive. .46

Restoring Using the EXCLUDE Option .47

Restoring With AMPs Offline. .48

Restoring With One AMP Offline .48

Restoring Cluster Archives .49

Restoring After a Reconfiguration .51

Restoring with a Larger Number of AMPs .51

Restoring a Specific AMP .52

Restoring Encrypted Data from an Archive File .52

Recovering Tables and Databases .52

Recovering With Offline AMPs .53

Recovering a Specific AMP .54

Copying Tables and Databases .54

Conditions for Using the COPY Statement. .55

COPY Examples .56

Copying Encrypted Data from an Archive File .59

Using Host Utility Locks .60

Teradata ARC Locks During an Archive Operation .61

Teradata ARC Locks During a Restore Operation .63

Locks Associated with Other Operations. .64

Setting Up Journal Tables .64

Location of Change Data. .65

Local Journaling .67

Archiving Journal Tables. .67

Table of Contents

Teradata Archive/Recovey Utility Reference 9

Journal Impact on Recovery . 67

Controlling Journal Checkpoint Operations . 68

Checkpoint Names. 68

Submitting a CHECKPOINT Statement . 68

Checkpoint and Locks . 68

Completing a Checkpoint With Offline AMPs . 69

Chapter 3:
Environment Variables . 71

ARCDFLT . 72

ARCENV and ARCENVX . 73

Chapter 4:
Runtime Parameters. 75

CATALOG . 78

CHARSETNAME . 83

CHECKPOINT . 88

CHECKSUM . 90

DATAENCRYPTION . 91

DBSERROR . 92

DEFAULT . 93

DEMODULE . 95

DEPARM . 97

ERRLOG . 99

FATAL . 100

FILEDEF . 101

HALT . 103

HEX . 104

IOMODULE . 105

IOPARM . 106

LOGON . 107

LOGSKIPPED . 108

OUTLOG . 109

PARM. 110

PAUSE . 113

Table of Contents

10 Teradata Archive/Recovey Utility Reference

PERFFILE .114

RESTART. .116

RESTARTLOG .117

SESSIONS .118

STARTAMP. .120

UEN (Utility Event Number) .121

VERBOSE .122

WORKDIR .126

Chapter 5:
Return Codes and UNIX Signals .127

Return Codes. .127

UNIX Signals .132

Chapter 6:
Archive/Recovery Control Language .133

ANALYZE .135

ARCHIVE .137

BUILD .150

CHECKPOINT .152

COPY .155

DELETE DATABASE .168

DELETE JOURNAL .170

ENABLE DATA EXTENSION. .172

ENABLE ENCRYPTION .174

LOGDATA. .176

LOGGING ONLINE ARCHIVE OFF .177

LOGGING ONLINE ARCHIVE ON .179

LOGMECH .181

LOGOFF .182

LOGON .183

RELEASE LOCK .185

RESTORE. .188

REVALIDATE REFERENCES FOR .202

ROLLBACK .205

Table of Contents

Teradata Archive/Recovey Utility Reference 11

ROLLFORWARD . 208

SET QUERY_BAND . 212

Chapter 7:
Restarting Teradata ARC . 213

Restart Log . 213

Restarting Teradata ARC . 213

During a Database DBC Operation . 213

During an Archive Operation . 214

During a Restore Operation . 214

During a Recovery Operation . 214

Restart After Client or Teradata ARC Failure . 214

Restarting an Archive Operation . 215

Restarting a Restore Operation. 216

Restarting a Checkpoint Operation . 217

Restart After a Teradata Database Failure. 217

Restarting an Archive Operation . 217

Restarting a Restore Operation. 218

Restarting a Recovery Operation . 218

Restarting a Checkpoint Operation . 218

Removing HUT Locks After a Restart . 218

Recovery Control Catalog . 219

Recording Row Activity. 219

Recording AMP Information . 221

Recording Device Information . 222

Appendix A:
How to Read Syntax Diagrams . 223

Syntax Diagram Conventions . 223

Appendix B:
Multivolume CMS Tape Support . 229

CMS Tape Support Messages. 229

Table of Contents

12 Teradata Archive/Recovey Utility Reference

Glossary .231

Index .235

Teradata Archive/Recovery Utility Reference 13

List of Tables

Table 1: Minimum Region Sizes Running from MVS. 19

Table 2: Tables Archived for Database DBC. 25

Table 3: Dictionary Rows Archived for User Database . 29

Table 4: User Database Data Dictionary Rows Restored. 45

Table 5: User Table Dictionary Rows Restored . 45

Table 6: Journal Options . 65

Table 7: Journal Change Row Location . 66

Table 8: Environment Variables . 71

Table 9: Runtime Parameters. 75

Table 10: Teradata-Defined Character Sets . 84

Table 11: Data Session Requirements . 119

Table 12: Return Codes . 128

Table 13: Database Error Messages . 129

Table 14: Client-Generated Error Messages . 130

Table 15: Summary of Teradata ARC Statements . 133

Table 16: Messages Routed to System Operator . 229

List of Tables

14 Teradata Archive/Recovery Utility Reference

Teradata Archive/Recovery Utility Reference 15

CHAPTER 1

Introduction

This chapter contains these topics:

• What is Teradata ARC?

• What is ARCMAIN?

• Starting ARCMAIN

• Canceling Teradata ARC

• Sample Teradata ARC Scripts

• Data Extension Modules

What is Teradata ARC?

Teradata ARC writes and reads sequential files on a Teradata client system to archive, restore,
and recover, as well as to copy, Teradata Database table data.

Platform Support

• IBM MVS/VM

• Linux RedHat/SUSE

• NCR UNIX MP-RAS

• Windows 2000/XP

• Windows Server 2003

Verifying Teradata ARC Version Number

The version number for Teradata ARC is always displayed in the startup banner in Teradata
ARC output. For example:

03/16/2007 10:06:19 Copyright 1989-2007, NCR Corporation.
03/16/2007 10:06:20 All Rights Reserved.
03/16/2007 10:06:20
03/16/2007 10:06:20 *** **** ****
03/16/2007 10:06:20 * * * * * PROGRAM: ARCMAIN
03/16/2007 10:06:20 ***** **** * RELEASE: 12.00.00.00
03/16/2007 10:06:20 * * * * * BUILD: 070128W (Feb 9 2007)
03/16/2007 10:06:20 * * * * ****
03/16/2007 10:06:20

It is also possible to verify the Teradata ARC version number with operating-specific
commands. For example, pkginfo -x arc on MP-RAS and rpm -q arc on Linux. On

Chapter 1: Introduction
What is Teradata ARC?

16 Teradata Archive/Recovery Utility Reference

Windows, click Start>Control Panel>Add or Remove Programs to display a list of installed
programs.

Teradata ARC-Specific Terminology

The terms backup and dump are often used interchangeably with archive.

Restore, which is a specific Teradata ARC keyword and the name of a Teradata ARC operation,
is part of the recovery process. In addition to restore, recovery entails other operations, such as
returning data tables to their state following their modification (called rolling forward),
returning data tables to the state they were in before they were modified (called rolling back),
and so on. For further explanation, see Chapter 6: “Archive/Recovery Control Language.”
There is no Teradata ARC statement called “recover.”

The difference between copy and restore is in the kind of operation being performed:

• A restore operation moves data from archived files back to the same Teradata Database
from which it was archived or to a different Teradata Database so long as the database DBC
is already restored.

• A copy operation moves data from an archived file back to a Teradata Database, not
necessarily to the same system, and creates a new table if one does not already exist on the
target database. When you copy selected partitions, the table must exist and be a table that
was previously copied as a full-table copy.

How Teradata ARC Works

Teradata ARC creates files when you archive databases, individual data tables, selected
partitions of primary partition index (PPI) tables, or permanent journal tables from the
Teradata Database. You provide Teradata ARC with such files when you restore databases,
individual data tables, partitions of tables, or permanent journal tables back to the Teradata
Database.

Teradata ARC also includes recovery with rollback and rollforward functions for data tables
defined with a journal option. Moreover, you can checkpoint these journals with a
synchronization point across all AMPs, and delete selected portions of the journals.

Starting Teradata ARC

Teradata ARC runs in either online or batch mode on:

• IBM MVS

• IBM VM

• Linux RedHat

• Linux SUSE

• NCR UNIX MP-RAS

• Windows 2000/XP

• Windows Server 2003

Chapter 1: Introduction
What is ARCMAIN?

Teradata Archive/Recovery Utility Reference 17

Although Teradata ARC is normally started in batch mode, it can be run interactively. In the
interactive mode, do not expect a user-friendly interface in online sessions.

Teradata ARC is started with a program module called ARCMAIN.

Uses of Teradata ARC

• Archive a database, individual table, or selected partitions of a PPI table from a Teradata
Database to a client resident file.

• Restore a database, individual table, or selected partitions of a PPI table back to a Teradata
Database from a client resident archive file.

• Copy an archived database, table, or selected partitions of a PPI table to a Teradata
Database on a different hardware platform than the one from which the database or table
was archived.

• Place a checkpoint entry in a journal table.

• Recover a database to an arbitrary checkpoint by rolling it back or rolling it forward, using
change images from a journal table.

• Delete change image rows from a journal table.

What is ARCMAIN?

ARCMAIN is the program name of the Teradata ARC utility. ARCMAIN uses these files:

• Input (required) contains archive and recovery control statements that you create.

• Output log contains all runtime messages that are output from the utility. The file
indicates, statement by statement, the activity that occurs from the statements in the input
file. This file is generated automatically.

• Restart log contains restart recovery information for internal use. The utility places into
this non-readable file the information that it needs if a task is terminated prematurely and
then restarted (via the RESTART runtime parameter). This file is automatically generated.

• Archive contains archival data. An output archive file is the target of the data provided by
an ARCHIVE statement. An input archive file is the source of data for restoring a database
or table. Any number of archive files can be used during a utility run. Use the FILE
parameter of the RESTORE/COPY or ARCHIVE statement to identify the names of input
and output archive files. This file is required only if the task involves the creation of an
archive or the restoration of a database or table.

Although Teradata ARC is able to process up to 350 ARCMAIN jobs at a time, each with up to
1024 sessions, it is highly recommended that you avoid running so many jobs.

Starting ARCMAIN

To view the actual JCL provided with your release, see the file on the release tape called
ARCJOB in dbcpfx.PROCLIB.

Chapter 1: Introduction
Starting ARCMAIN

18 Teradata Archive/Recovery Utility Reference

Starting ARCMAIN from MVS

This sample JCL shows how to start Teradata ARC from MVS:

//ARCJOB PROC ARCPARM=,DBCPFX=,

//USERJOB JOB <job info>
//ARCJOB PROC ARCPARM=,DBCPFX=,
// DUMP=DUMMY,DUMPDSN=,DSEQ=,DVOL=,
// RESTORE=DUMMY,RSTRDSN=,DBCLOG=
//*
//STEP1 EXEC PGM=ARCMAIN,
// PARM='&ARCPARM'
//STEPLIB DD DSN=&DBCPFX..AUTHLOAD,DISP=SHR
// DD DSN=&DBCPFX..TRLOAD,DISP=SHR
//ARCHIVE DD &DUMP,DSN=&DBCPFX..&DUMPDSN,DISP=(,CATLG),
// UNIT=TAPE,LABEL=(&DSEQ,SL),
// DCB=BLKSIZE=32760,VOL=SER=(&DVOL)
//ARCIN DD&RESTORE,DSN=&DBCPFX..&RESTORE&RSTRDSN,DISP=OLD
//DBCLOG DD DSN=&DBCPFX..&DBCLOG,DISP=OLD
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
// PEND
//*
//S1 EXEC ARCJOB,ARCPARM='SESSIONS=100 HEX',
// DBCPFX=DBCTEST,DUMP='DUMP.DATA',DSEQ=1,
// DVOL='TAPE01,TAPE02',DBCLOG='ARCLOG.DATA'
//SYSIN DD DATA,DLM=##

LOGON DBC,DBC;
ARCHIVE DATA TABLES (PERSONNEL) ALL,

RELEASE LOCK,
INDEXES,
FILE=ARCHIVE;

LOGOFF;
##

//

The JCL example uses these syntax elements:

• DUMP is the archive keyword, with DUMPDSN as the data set name for the archive
output file. DUDISP specifies whether to KEEP or CATLG the output file.

• DBCLOG is the log file data set name created by Teradata ARC.

• DBCPFX is the high-level qualifier for Teradata Database load libraries.

The database DBCLOG card indicates the restart log file, and the data set must have RECFM
either F, FBS or FS. For better results, set BLKSIZE near 32K. The ARCHIVE card is not
needed in this example; it is shown for illustration purposes. Create and catalog database
DBCLOG once and reuse it as needed. To create the database DBCLOG file, see the file on the
release tape called ARCLOG, in dbcpfx.PROCLIB.

Calculating Region Size

Table 1 is applicable to Teradata ARC 8.0 or earlier. Use the information in this table to
estimate the minimum region size (in kilobytes) needed to run Teradata ARC from MVS.

Chapter 1: Introduction
Starting ARCMAIN

Teradata Archive/Recovery Utility Reference 19

Note: This table provides estimates for archive or restore operations only. Copy operations
may require more memory.

where

Example

In this example, database db2 and table db3.a are not children of database db.

ARCHIVE DATA TABLES (db) ALL,(db2),(db3.a),
RELEASE LOCK,
FILE=ARCHIVE;

If the SELECT query returns 5 for db, the total number of objects in the ARCHIVE DATA
TABLES statement is 7.

Starting ARCMAIN from VM

To start Teradata ARC from VM, include the following lines in the EXEC:

/* Minimal EXEC to run ARCMAIN */
’GLOBAL LOADLIB LSCRTL’
’GLOBAL TXTLIB CLI’
’SET LDRTBLS 10’
’CP SET TIMER REAL’
’FILEDEF DBCLOG DISK DBCLOG FILE A (RECFM F LRECL 32760’
’FILEDEF ARCHIVE TAP1 SL (BLKSIZE 32760 RECFM U DEN 6250’
’LABELDEF ARCHIVE VOLID ARC002 VOLSEQ 0001 SEC 0 FID ARCH100’
’ARCMAIN <ARC.CNTL.A SESSIONS=4’

The files ARCMAIN MODULE, CLI TXTLIB, and LSCTRL LOADLIB must be on minidisks or
SFS directories that are accessed from the CMS virtual machine. The latter two files are the
CLIv2 and SAS/C runtime libraries, respectively. The parameter <ARC.CNTL.A in the

Table 1: Minimum Region Sizes Running from MVS

Number of Sessions
Region Size For 200
Objects

Region Size For 2,000
Objects

Region Size For
8,000 Objects

10 2,500 KB 3,200 KB 5,620 KB

50 4,420 KB 5,140 KB 7,540 KB

100 6,820 KB 7,540 9,940 KB

Table element... Is the...

Number of Objects number of databases plus number of tables and stored
procedures to be archived, restored, or copied.

The ALL keyword expands the number according to this query:

SELECT count (*) from database DBC.CHILDREN WHERE
PARENT = ‘<db>’

Sessions number of data sessions to use in the operation.

Chapter 1: Introduction
Starting ARCMAIN

20 Teradata Archive/Recovery Utility Reference

ARCMAIN command indicates the utility input statements are to be read from the file ARC
CNTL on the CMS A-disk. Output from the job is routed to the terminal by default. Route
output to a file called JOB OUTPUT on the A-disk by adding the parameter >JOB.OUTPUT.A
to the ARCMAIN command.

Note that the database DBCLOG file needs to be RECFM F for VM. Set BLKSIZE near 32K.
Create and catalog database DBCLOG once and reuse it as needed. The ARCHIVE FILEDEF
and LABELDEF statements illustrate settings you can use if archiving to tape on VM. The
ARCLOG EXEC from the release tape allocates and initializes the archive/recovery restart log
file database DBCLOG.

For the complete EXEC sample and variables, see the file on the ARC EXEC release tape.

Starting ARCMAIN from Linux, MP-RAS, and Windows 2000/XP/Server
2003

Examples in this section are applicable to Linux, MP-RAS, and Windows 2000/XP/Server
2003. The first example is a command-line invocation of Teradata ARC from Windows 2000/
XP/Server 2003:

ARCMAIN SESSIONS=8 CATALOG OUTLOG=ARCALL.OUT <ARCALL.IN

The above command line calls the ARCMAIN executable, uses eight sessions, and enables the
catalog feature.

ARCALL.IN is an input file that contains ARCMAIN commands. The “<“ redirects the input
file to ARCMAIN.

By default, data is written to (or read from) a disk file in the current directory. With a tape
product, use IOMODULE and IOPARM command-line parameters. To determine the proper
values for the IOMODULE and IOPARM command-line parameters, see “IOMODULE” on
page 105 and “LOGON” on page 107.

Two of the Open Teradata Backup (OTB) products, BakBone NetVault and Veritas
NetBackup, provide additional archive and restore functionality to Teradata ARC, including a
graphical user interface (GUI) to perform archive and restore operations. See the BakBone
NetVault APM/Plugin User's Guide for Teradata or the Veritas NetBackup Extension for
Teradata Administrator Guide for information on how to install, configure, and use the
Teradata access module for these products.

Using a Configuration File or Environment Variables

It is possible to save frequently used command-line options in an environment variable or
configuration file. For example:

If T:\DEFAULTS\CONFIG.ARC contains the following runtime parameters (the parameters
are defined in this file):

CATALOG
FILEDEF=(ARCHIVE,ARCHIVE_%UEN%)
SESSIONS=8

Chapter 1: Introduction
Starting ARCMAIN

Teradata Archive/Recovery Utility Reference 21

and one or both of the following environment variables:

• ARCDFLT

• ARCENV or ARCENVX (These are the same environment variables, except that
ARCENVX has override priority.)

are set temporarily at the command prompt as follows:

SET ARCDFLT=T:\DEFAULT\CONFIG.ARC
SET ARCENV=WDIR=C:\TEMP\ARC\

or set permanently, using Start > Settings > Control Panel > System > Environment, then
ARCMAIN can be called, as follows:

ARCMAIN RLOG=JOB980813 <INPUT.ARC

In the above command, runtime parameters RLOG=JOB980813 are not defined in a
configuration file or in an environment variable because they are job-specific. The call to
ARCMAIN is equivalent to the following command-line invocation of Teradata ARC:

ARCMAIN CATALOG
FILEDEF=(ARCHIVE,ARCHIVE_%UEN%) SESSIONS=8 WDIR=C:\TEMP\ARC

RLOG=JOB980813
<INPUT.ARC

When called, ARCMAIN automatically uses the context of any set environment variable. The
example assumes that ARCENV is set to WDIR=C:\TEMP\ARC\.

Using Environment Variables

Almost all runtime parameters can be set as defaults in the ARCENV environment variable, or
in the file pointed to by the ARCDFLT environment variable, or in some combination of the
two.

These environment variables are known to ARCMAIN, which loads the contents of ARCENV
internally, or the Default file when building its runtime parameters. If a parameter is specified
multiple times in difference places, the override priority is:

1 Parameters set in ARCENVX

2 Actual runtime parameters on the command line

3 Parameters set in ARCENV

4 Parameters set in the default file pointed to by ARCDFLT

For example, if you want everyone to use a specific runtime parameter, such as CATALOG,
create a network default file that contains the parameter, then point ARCDFLT to it.

Local defaults or frequently used parameters such as IOMODULE can be set in ARCENV,
which overrides parameters set in the network default file. Parameters on the command line
override parameters set in ARCENV; parameters set in ARCENVX override actual runtime
parameters on the command line.

Chapter 1: Introduction
Canceling Teradata ARC

22 Teradata Archive/Recovery Utility Reference

Canceling Teradata ARC

Use standard operating system or terminal commands to cancel a Teradata ARC task.

To resume an aborted operation, specify the RESTART parameter when you resubmit the task.
If a restore operation aborts, there is no need to delete the partially restored database because
partially restored data is overwritten when you retry the restore operation.

Because utility locks are not released when an operation is aborted, you must explicitly release
the locks on the entity that was being processed when the operation aborted.

Sample Teradata ARC Scripts

Example 1: Archive Script

LOGON DBCID/USERID,PASSWORD;
ARCHIVE DATA TABLES (DB1) ALL,(DB2),
RELEASE LOCK,
FILE=ARCHIVE;
LOGOFF;

This script performs these archive operations:

1 ARCMAIN logs on to a Teradata Database pointed to by database DBCID.

2 ARCMAIN places Host Utility (HUT) locks on the databases to be archived before starting
the archive operation.

3 The database’s DB1, all its descendent databases, and DB2 are backed up. The operation is
performed database by database in alphabetical order.

4 The result of the backup is written to the file pointed to by FILE=.

For Linux, MP-RAS, and Windows 2000/XP/Server 2003: If no IOMODULE and
IOPARM runtime parameters are specified (as in the above example), data is written to
hard disk.

If IOMODULE and IOPARM are specified, data is written to the tape drive or other media
specified and pointed to by IOMODULE and defined by the initialization string to which
IOPARM is set.

For an example, see “Starting ARCMAIN from Linux, MP-RAS, and Windows 2000/XP/
Server 2003” on page 20.

5 The RELEASE LOCK option releases the HUT locks after the archive of each database is
complete.

6 After all databases are archived, the LOGOFF command disconnects ARCMAIN from the
Teradata Database.

Chapter 1: Introduction
Data Extension Modules

Teradata Archive/Recovery Utility Reference 23

Example 2: Restore Script

LOGON DBCID/USERID,PASSWORD;
RESTORE DATA TABLES (DB1) ALL, (DB2),
RELEASE LOCK,
FILE=ARCHIVE;
LOGOFF;

This script performs these restore operations:

1 ARCMAIN logs on to a Teradata Database pointed to by database DBCID.

2 ARCMAIN places Host Utility (HUT) locks on the databases to be restored before starting
the restore operation.

3 The database’s DB1, all its descendent databases, and DB2 are restored. The operation is
performed database by database in alphabetical order.

Note: For each database, these operations are performed table by table in alphabetical
order:

• Primary data is restored.

• If applicable, fallback and index data are built from primary data.

4 The RELEASE LOCK option releases the HUT locks after the restore of each database is
complete.

5 After all databases are restored, the LOGOFF command disconnects ARCMAIN from the
Teradata Database.

Data Extension Modules

Note: Data extension modules are valid only on Windows platforms.

Data extension modules expand the functionality of Teradata ARC by allowing archive data to
be processed (encrypted, for example) prior to being sent to, or after being retrieved from,
output media.

The ENABLE DATA EXTENSION command dynamically loads extension modules; the
ENABLE ENCRYPTION command dynamically loads the encryption extension module. The
Protegrity®encryption module, pepbar.plm, is the default encryption module. Refer to
Protegrity documentation at http://www.protegrity.com/solutioncenter.html for information
on installation, setup, and operation of the Protegrity product.

It is also possible to enable data extension modules with command-line parameters
DEMODULE and DEPARM. When using the parameters, specify both DEMODULE and
DEPARM (which correspond with the MODULE and PARM options in the ENABLE DATA
EXTENSION command).

Example

ARCMAIN SESSIONS=8 CATALOG OUTLOG=ARCALL.OUT DEMODULE=PEPBAR.PLM
DEPARM='ALGORITHM=AES128'

http://www.protegrity.com/solutioncenter.html

Chapter 1: Introduction
Data Extension Modules

24 Teradata Archive/Recovery Utility Reference

The example has the same result as specifying:

ENABLE ENCRYPTION;

In the ENABLE ENCRYPTION example, the pepbar.plm Protegrity encryption module and
AES128 encryption algorithm are used because they are the defaults.

Teradata Archive/Recovery Utility Reference 25

CHAPTER 2

Archive/Recovery Operations

This chapter contains these topics:

• Database DBC

• Database SYSUDTLIB

• Archiving Tables and Databases

• Restoring Tables and Databases

• Recovering Tables and Databases

• Copying Tables and Databases

• Using Host Utility Locks

• Setting Up Journal Tables

• Controlling Journal Checkpoint Operations

Database DBC

The DBC database contains critical system tables that define the user databases in the Teradata
Database.

Table 2 lists the tables that are archived for database DBC.

Note: If a DBC user table is not listed in Table 2, it will not be archived for database DBC.
Instead, use SQL to copy the DBC user table into a user-level table in another database for
Teradata ARC to back up. The information cannot be copied back to the DBC user table
during a restore process.

Table 2: Tables Archived for Database DBC

Table Name Description

AccessRights Specifies all granted rights.

AccLogRuleTbl Defines access logging rules generated by executing BEGIN/END
LOGGING statements.

Accounts Lists all authorized account numbers.

CollationTbl Defines MULTINATIONAL collation.

DBase Defines each database and user.

Chapter 2: Archive/Recovery Operations
Database DBC

26 Teradata Archive/Recovery Utility Reference

If included in an archive operation, database DBC is always archived first, regardless of
alphabetical order. If included in a restore or copy operation, database DBC is always restored
or copied first. Refer to the next section for specific instructions on restoring database DBC.

Hosts Defines information about user defined character sets used as defaults
for client systems.

LogonRuleTbl Defines information about logon rules generated by a GRANT LOGON
statement.

Next Generates table, stored procedure, and database identifiers (internal
table).

OldPasswords Lists passwords that are no longer in use, including the user to which the
password was assigned, the date the password was changed, and
encrypted password string.

Owners Defines all databases owned by another.

Parents Defines all parent/child relationships between databases.

Profiles Defines the available roles and profiles on the Teradata machine.

RCConfiguration Records the configuration for RCEvent rows.

RCEvent Records all archive and recovery activities.

RCMedia Records all removable devices used in archive activities.

RepGroup Defines each replication group in the server.

RoleGrants Defines the available roles and profiles on the Teradata machine.

Roles Defines the available roles and profiles on the Teradata machine.

SysSecDefaults Defines the system security defaults of a Teradata Database, for example,
the minimum and maximum characters allowed in a password.

Translation Defines hexadecimal codes that form translation tables for non-English
character sets.

UDTCast Contains information on the source and target data types that are
involved in the casting operation.

UDTInfo Captures the specifics contained within the CREATE TYPE statement.

UDTTransform Contains the transform group name and the routine identifiers.

Table 2: Tables Archived for Database DBC (continued)

Table Name Description

Chapter 2: Archive/Recovery Operations
Database SYSUDTLIB

Teradata Archive/Recovery Utility Reference 27

Restoring

To restore database DBC to a system, the DBC database must be the only database that
contains objects. To remove all user tables, views, macros, stored procedures, triggers, UDFs,
and UDTs, use this command:

delete database (DBC) ALL, exclude (DBC);

To drop permanent journal tables, use either the MODIFY USER or MODIFY DATABASE
statement (See the MODIFY DATABASE/USER description in SQL Reference: Data Definition
Statements.)

Database SYSUDTLIB

There is a system database, SYSUDTLIB, that is created and maintained by the Teradata
Database and contains the definition of all of the User Defined Types (UDTs) defined in the
Teradata Database. Database SYSUDTLIB is logically linked to the DBC database. Therefore,
whenever an operation involves the DBC database, the SYSUDTLIB database is usually
involved also. The next paragraphs discuss exceptions.

Archiving

If you archive database DBC, ARC automatically archives database SYSUDTLIB also. DBC is
always archived first and SYSUDTLIB archived second, before any other objects are archived.
Do not archive SYSUDTLIB as a separate object.

If you use the EXCLUDE option to exclude DBC on an ARCHIVE statement, SYSUDTLIB
will be excluded also.

Restoring

If you restore database DBC, ARC automatically restores database SYSUDTLIB too. DBC is
always restored first and SYSUDTLIB restored second, before any other objects are restored.
Do not restore SYSUDTLIB as a separate object.

If you use the EXCLUDE option to exclude DBC on a RESTORE statement, SYSUDTLIB will
be excluded also.

Refer to “Restoring” on page 27 for specific instructions on restoring database DBC.

Copying

 You cannot specify database DBC or SYSUDTLIB on a COPY statement unless you use the
COPY FROM format. When using the COPY FROM format, copy either DBC or SYSUDTLIB
as separate source objects, but only if the target database name is not DBC or SYSUDTLIB.

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

28 Teradata Archive/Recovery Utility Reference

Deleting

To prepare a system for restoring Database DBC, use the DELETE command to delete all
objects in the system except for permanent journal tables. (To drop permanent journal tables,
use either the MODIFY USER or MODIFY DATABASE statement.)

delete database (DBC) ALL, exclude (DBC);

When the EXCLUDE DBC option is used with the (DBC) ALL option on a DELETE
DATABASE statement, SYSUDTLIB will be delinked from DBC. This allows SYSUDTLIB to
be deleted so that DBC can be restored. However, SYSUDTLIB is deleted last. after all other
databases have been deleted. Any objects that have definitions based on the UDTs stored in
SYSUDTLIB are deleted before the UDTs themselves are deleted.

If you use the EXCLUDE option to exclude DBC on a DELETE DATABASE statement, but do
not use the (DBC) ALL option, SYSUDTLIB will continue to be linked to DBC and both DBC
and SYSUDTLIB will be excluded from the delete operation.

Do not specify SYSUDTLIB as an object of the DELETE DATABASE statement.

Archiving Tables and Databases

An archive operation copies database information from the Teradata Database to one or two
client resident files. The archive can be from any of the following:

• All AMPs

• Specified clusters of AMPs

• Specified AMPs

In general, Teradata ARC archives have these characteristics:

• If an ARCHIVE statement specifies more than one database, Teradata ARC archives the
databases (except for DBC and SYSUDTLIB) in alphabetical order. Within each database,
all related tables and stored procedures are archived in alphabetical order.

• If the statement specifies multiple individual tables, Teradata ARC archives the tables in
alphabetical order first according to database and then by table.

• If an archive of database DBC is interrupted for any reason, the entire archive must be
performed again. It is not possible to restart an archive operation on database DBC.

• Archives cannot contain both data tables and journal tables. A journal table archive
contains only the saved portion of the table.

• Journal table archives do not delete change images from the journal table. Therefore, you
can accumulate change images for several activity periods by executing a checkpoint with
save after each period and then archiving the table without deleting the journal.

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

Teradata Archive/Recovery Utility Reference 29

Concurrency Control

An ARCHIVE statement places a HUT read lock on:

• the database when archiving the database

• the table when archiving the table

If there is an existing SQL read lock or access lock (created by using the LOCKING FOR
ACCESS modifier) on the database, it is still possible for Teradata ARC to obtain its read lock
and start the archive.

Introduction to Teradata Warehouse contains details on concurrency control and transaction
recovery.

Archiving With All AMPs Online

An all-AMPs archive (or dictionary archive) of a database or table contains the Teradata
Database dictionary rows that are needed to define the entity.

Table 3 alphabetically lists the dictionary rows that are archived by an all-AMPs data archive
(or a dictionary tables archive) of a user database or table.

Table 3: Dictionary Rows Archived for User Database

Table Rows Description

ConstraintNames Constraints that have names

Dependency Stores relationships among a UDT, its dependent routines, User-
Defined Casts, User-Defined Transforms, User-Defined
Orderings, and any dependency on any other database object.

Indexes Columns that are indexes

IndexNames Indexes that have names

ReferencedTbls Referenced columns (i.e., Parent Key) for Parent tables

ReferencingTbls Referencing columns (i.e., Foreign Key) for Child tables

TableConstraints Table level Check constraints

TVFields All columns in data tables and views

TVM All data tables, views, macros, stored procedures, and triggers in
the database

UnresolvedReferences Unresolved referential constraints

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

30 Teradata Archive/Recovery Utility Reference

Example

The following example shows how to archive all databases when all AMPs are online:

LOGON DBC,DBC;
ARCHIVE DATA TABLES (DBC) ALL,
RELEASE LOCK,
FILE=ARCHIVE;
LOGOFF;

When the archive operation is complete, check the output log to verify that all AMPs
remained online during the archive.

If an AMP goes offline during an archive, the output log reports the processor number that is
offline. If one or more AMPs go offline, see “Archiving With Offline AMPs” on page 36 for
more information.

Archiving Selected Partitions of PPI Tables

You can perform an all-AMPs archive on one or more partitions of a table rather than
performing a full-table backup and restore. The ability to select partitions from PPI tables is
limited to all-AMP archives. Dictionary, cluster, and journal archives are not supported.

Use partitioning to:

• Archive only a subset of data and avoid archiving data that has already been backed up.
(This can minimize the size of the archive and improve performance.)

• Restore data in a table that is partially damaged.

• Copy a limited set of data to a disaster recovery machine or to a test system.

Before using this feature, be sure to understand “Potential Data Risks When Archiving/
Restoring Selected Partitions” on page 33.

For information about the keywords that are specific to archiving and restoring selected
partitions of PPI tables, see “Using Keywords with ARCHIVE” on page 142 and “Archiving
Selected Partitions of PPI Tables” on page 146.

Description

PPI allows the division of data in a table into separate partitions based on a specific
partitioning scheme. With Teradata ARC, individual partitions can be archived according to
user-defined partitioning expressions. For more information about options for PPI archives/
restores, see Chapter 6: “Archive/Recovery Control Language”.

Considerations

Consider the following when archiving selected partitions in PPI tables:

• A restore operation always deletes the selected partitions of the target table before
restoring the rows that are stored in the archive.

• Archiving selected partitions operates on complete partitions within tables, meaning that
the selection of a partial partition implies the entire partition.

• PPI and non-PPI tables are allowed in a single command. This allows you to manage both
table types in a single database with the EXCLUDE TABLES option.

• Partitioning is based on one or more columns specified in the table definition.

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

Teradata Archive/Recovery Utility Reference 31

• Partition elimination restricts a query to operating only in the set of partitions that are
required for the query.

• Incremental archives are possible by using a partition expression that is based on date
fields, which indicate when a row is inserted or updated.

• An archive or restore of selected partitions only places full-table HUT locks. HUT locks on
individual partitions are not supported.

• It is recommended that you re-collect table statistics after a restore of selected partitions
because statistics are part of the table dictionary rows, which are not restored during a
partition-level restore.

• If a table has a partitioning expression that is different from the partitioning expression
used in the PPI archive, a PPI restore is possible as long as no other significant DDL
changes are made to the table.

The archival of selected partitions has limitations. For more information, see “Potential Data
Risks When Archiving/Restoring Selected Partitions” on page 33 and “Considerations Before
Restoring Data” on page 40.

The next example shows a partitioning expression that follows the PARTITION BY keyword.
Data is partitioned for the TransactionHistory table, based on the month when the transaction
occurred:

CREATE TABLE TransactionHistory
(TransactionID INTEGER,
TransactionDate DATE FORMAT ‘yyyy-mm’dd’,
TransactionParam1 INTEGER,
…
)
PRIMARY INDEX (TransactionID)
PARTITION BY RANGE_N
(TransactionDate BETWEEN DATE ‘2000-01-01’ AND DATE ‘2004-12-31’
EACH INTERVAL ‘1’ MONTH
);

Procedure for Backing Up Selected Partitions

The procedure in this section is a generic example of how to set up archive and restore scripts
for selected partitions. This example is based on the TransactionHistory table previously
described.

Assume that this backup schedule is desired for the TransactionHistory table:

• An incremental backup of the currently active partition will be done nightly.

• At the beginning of each month, the final incremental backup for the previous month will
be done; this backup will be saved until the next differential or full-table backup is done.

• Every three months, a differential backup will be done, containing the data for the last
three months.

• Every year, a full-table backup will be done.

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

32 Teradata Archive/Recovery Utility Reference

To back up PPI data in the TransactionHistory table:

1 Perform a full-table archive:

ARCHIVE DATA TABLES
 (SYSDBA.TransactionHistory),
RELEASE LOCK,
FILE=ARCHIVE;

2 Set up incremental archives:

ARCHIVE DATA TABLES
 (SYSDBA.TransactionHistory)
 (PARTITIONS WHERE
 (! TransactionDate BETWEEN CURRENT_DATE – 3 AND CURRENT_DATE
 !)),
RELEASE LOCK,
FILE=ARCHIVE;

Note: In this example, ‘CURRENT_DATE – 3’ archives a partition even after it becomes
non-active, in case the final archive of the partition fails or the value of CURRENT_DATE
changes during the final backup.

3 Set up differential backups:

ARCHIVE DATA TABLES
 (SYSDBA.TransactionHistory)
 (PARTITIONS WHERE
 (! TransactionDate BETWEEN DATE ‘2004-01-01’ AND DATE ‘2004-03-31’
 !)),
RELEASE LOCK,
FILE=ARCHIVE;

4 (Optional) Perform a separate partition backup if you update a partition that is not
archived by the incremental backup step (step 2):

ARCHIVE DATA TABLES
 (SYSDBA.TransactionHistory)
 (PARTITIONS WHERE
 (! TransactionDate = DATE ‘2004-03-15’
 !)),
RELEASE LOCK,
FILE=ARCHIVE;

To fully restore the TransactionHistory table:

1 Perform a complete restoration of the full-table archive:

RESTORE DATA TABLES
 (SYSDBA.TransactionHistory),
RELEASE LOCK,
FILE=ARCHIVE;

2 Perform a full restoration of the differential and incremental archives (in order):

RESTORE DATA TABLES(SYSDBA.TransactionHistory) (ALL PARTITIONS),
RELEASE LOCK,
FILE=ARCHIVE;

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

Teradata Archive/Recovery Utility Reference 33

3 (Optional) If a separate partition backup is performed due to an update of a non-active
partition, restore the separate partition backup after (or instead of) the differential or
incremental backup that contains the updated partition:

RESTORE DATA TABLES
 (SYSDBA.TransactionHistory)
 (PARTITIONS WHERE
 (! TransactionDate = DATE ‘2004-03-15’
 !)),
RELEASE LOCK,
FILE=ARCHIVE;

Individual partitions can also be restored from a full-table or selected-partition archive. To
restore individual partitions, specify the partitions to be restored in a PARTITIONS WHERE
expression:

RESTORE DATA TABLES
 (SYSDBA.TransactionHistory)
 (PARTITIONS WHERE
 (! TransactionDate BETWEEN DATE ‘2004-05-01’ AND DATE ‘2004-05-31’!)

),
RELEASE LOCK,
FILE=ARCHIVE;

Potential Data Risks When Archiving/Restoring Selected Partitions

Be careful when archiving partitioned tables: a number of undesirable conditions can occur.
For additional issues that might occur during restore operations, see “Considerations Before
Restoring Data” on page 40.

Caution: The following cases generally do not display an error or give any indication that a problem has
occurred. In most instances, the only indication is that data is incorrect or is missing from a
table.

• Use Correct Specifications - The incorrect use of specifications causes the following
problems:

• An incorrect PARTITIONS WHERE specification during backup can result in an
incomplete archive or difficulties during a restore operation.

• An incorrect PARTITIONS WHERE or ALL PARTITIONS specification during restore
can result in data lost from a table or the restoration of stale data to a table if the
archive being restored contains partial, incomplete, or stale versions of an already
existing partition.

• Restrict Updates to Active Partitions - It is not possible to determine which partitions
have been modified since the last backup. If changed partitions are not re-archived, the
changes are lost when restored.

For example, if, for a given table, the backup strategy is to only backup the active (latest)
partition of the table, and a change is made to a non-active partition (to fix an incorrect
update), the change is not archived unless you run a separate archive of the changed
partitions.

The remedy for this situation is either to restrict updates to the active partitions only (by
using views to control which rows/partitions are updated) or to re-archive all modified
partitions.

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

34 Teradata Archive/Recovery Utility Reference

• Do Not Change Values of Functions or Variables - If a built-in SQL function or variable is
used in the PARTITIONS WHERE condition, and the value of the function or variable
changes during the job, a different set of partitions might be archived (or restored) for
some objects in that single archive.

For example, if an archive job uses the CURRENT_DATE built-in function to determine
which is the active partition, and the backup runs past midnight, the date change causes a
different partition to be selected. This means that objects archived after midnight will
archive the new (and probably empty) partition.

The remedy for this situation is to do one of the following:

• Avoid using a changing function or variable in the PARTITIONS WHERE condition.

• Run the backup at a time when the value will not change.

• Modify the PARTITIONS WHERE condition to take the value change into account
when selecting partitions. For example, you can define a range, such as ‘BETWEEN
CURRENT_DATE – n AND_CURRENT_DATE’ to archive the active partition even if the
date changes.

• Always Specify PARTITIONS WHERE or ALL PARTITIONS - If PARTITIONS WHERE
or ALL PARTITIONS are not specified for a RESTORE or COPY operation, the default
action is to overwrite the entire table with the archived table definition and data.
Essentially, this is the same as a full-table restore.

For example, if you forget to use PARTITIONS WHERE when you try to restore a single-
partition backup, data is dropped from the table and the single partition stored on the
archive is restored.

The remedy for this situation is to always specify PARTITIONS WHERE or ALL
PARTITIONS when restoring partitions into an existing table, unless you intended to
overwrite the existing table.

• Know What Partitions are Being Deleted - In a RESTORE or COPY operation, all
partitions that match the PARTITIONS WHERE condition are deleted, even if they are not
stored on the archive.

For example, if you restore an archive that contains the data for April 2004, but mistakenly
enter a PARTITIONS WHERE condition that matches both March and April 2004, the
data for both March and April 2004 are deleted, and only April 2004 is restored.

The remedy for this situation is to be very careful about using the PARTITONS WHERE
condition. If there is any doubt about which partitions are affected, COPY the selected
partition backup to a staging table, and manually copy the desired partition(s) into the
target table using INSERT/SELECT and/or DELETE.

• Avoid Restoring From a Previous Partitioning Scheme - When changing the partitioning
expression for a table, it is possible to change the boundaries of existing partitions. If these
partitions are restored, Teradata might either drop more data than expected or restore less
data than expected, if the archive does not include data for all of the selected partitions.

For example, if an archive is done on a table partitioned by month with the archive data
corresponding to March 2004, and the table is re-partitioned by week, then a PPI restore of
the March backup (using ALL PARTITIONS) overwrites the data for all weeks that contain

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

Teradata Archive/Recovery Utility Reference 35

at least one day in March. As a result, the last few days of February and the first few days of
April might be deleted and not restored.

The remedy for this situation is to avoid restoring partition backups from a previous
partitioning scheme to an updated table. Or, use LOG WHERE for the weeks that contain
days in both March and February/April, and manually copy the rows into the table.

• Track the Partitions in Each Archive - Manual steps are required to determine which
partitions are archived by a given backup job, or to determine which backup job has the
latest version of a given partition. ANALYZE displays the Teradata-generated bounding
condition that defines the archived partitions. (This differs from a user-entered condition
that might only qualify partial partitions.) In this case, inconsistent or old data might be
restored to the table if the wrong archive is restored for a partition, or if partition-level
archives are restored out-of-order and the archives contain an overlapping set of
partitions.

For example, updated data is lost is the following situation. Assume that a final backup for
a March 2004 partition is performed on April 1, 2004. On April 5, a mistake is found in a
row dated March 16, so the row is updated, and a new backup of the March partition is
done. If, for instance, the table is accidentally deleted a month later, and you attempt to
restore the April 1 backup, instead of the April 5 backup, the updated data is lost.

The remedy is to either keep track of the partition contents of each archived table, retain
the output listing associated with a tape, or run ANALYZE jobs on archives to determine
the partitions in each archive.

Archiving by Cluster

An alternative to archiving data tables from all AMPs into a single archive is to archive into a
set of archive files called a cluster archive.

To create a cluster archive, archive the data tables by groups of AMP clusters so that the
complete set of archive files contains all the data from all of the AMPs. This allows you to save
time by archiving jobs in parallel.

Cluster Archive vs. Dictionary Archive

A cluster archive does not contain dictionary information (the data stored in the dictionary
tables for the tables in the database). Create a dictionary archive before you run a cluster
archive for the first time and whenever you modify the structure of tables in the cluster
archive. Consequently, if you archive by cluster, archive the dictionary and maintain it
separately. Do not create a cluster archive of journal tables or database DBC.

Because cluster archives only contain table data, perform a dictionary archive for any
databases or tables that are included in the cluster archive:

1 Create the dictionary archive immediately prior to the cluster archives and then, without
releasing Teradata ARC locks.

2 Follow with a set of cluster archive requests covering all AMPs.

To restore successfully, the table data in the cluster archives must match the dictionary
definition contained in the dictionary archive. A restore operation fails when it tries to restore
cluster archives that do not match the dictionary archive.

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

36 Teradata Archive/Recovery Utility Reference

Example

This example assumes the system has four clusters, each consisting of two AMPs. Each archive
is of two clusters. The procedure is divided into three jobs. Run Job 1 first, then run Job 2 and
Job 3 in parallel. Finally, run Job 4. This example makes a dictionary archive and two cluster
archives.

Archiving With Offline AMPs

The Teradata Database configuration determines how to archive when AMPs are offline. If a
table has fallback protection or dual after-image journaling, Teradata ARC makes a complete
copy of the data rows, even if an AMP (per cluster) is offline during the archive. For a cluster
archive, only AMPs within specified clusters are considered.

Because the Teradata Database dictionary rows are all defined with fallback, Teradata ARC
always performs a complete archive of the necessary dictionary entries, even if AMPs are
offline. This is also true when database DBC is archived.

If AMPs are offline and you request an all-AMPs or a cluster archive involving nonfallback
tables or a journal table archive that contains single images, then you must do a specific AMP
archive for the offline processors after the AMPs are back online.

Because single after-images (remote or local) are maintained on single AMPs, after-images for
offline AMPs are not included in the archive. If you restore one of these archives with a
rollforward operation, data from some of the online AMPs is not rolled forward.

Example 1

This example archives all databases when one AMP is offline with Teradata Database. In this
case, the offline AMP is not out of service because of a disk failure.

LOGON DBC,DBC;
ARCHIVE DATA TABLES (DBC) ALL,

RELEASE LOCK,
INDEXES,
FILE=ARCHIVE;

LOGOFF;

Job 1 LOGON USER,USER;
ARCHIVE DICTIONARY TABLES (USERDB),

FILE = ARCHDICT;
LOGOFF;

Job 2 (run in parallel
with Job 3)

LOGON USER, USER;
ARCHIVE DATA TABLES (USERDB),

CLUSTER = 0,1,
FILE = CLUSTER1;
LOGOFF;

Job 3 (run in parallel
with Job 2)

LOGON USER, USER;
ARCHIVE DATA TABLES (USERDB),
CLUSTER = 2,3,

FILE = CLUSTER2;
LOGOFF;

Job 4 LOGON USER, USER;
RELEASE LOCK (USERDB);
LOGOFF;

Chapter 2: Archive/Recovery Operations
Archiving Tables and Databases

Teradata Archive/Recovery Utility Reference 37

When the archive operation is complete, check the print file to verify that the offline AMP did
not come back online during the archive. If the offline AMP came back online during the
archive, the print file reports the following with Teradata Database, where n is the number of
the AMP:

AMP n BACK ON-LINE

When the offline AMP returns to online operation, run another archive procedure to archive
rows from the offline AMP, even if the AMP came back online during the archive.

Example 2

This example archives all nonfallback data from an AMP that was offline during a previous
Teradata Database archive operation.

LOGON DBC,DBC;
ARCHIVE NO FALLBACK TABLES (DBC) ALL,

AMP=3,
EXCLUDE (DBC),
RELEASE LOCK,
FILE=ARCHIVE;

LOGOFF;

Archiving Large Objects (LOBs)

Teradata ARC supports the archive operation for tables that contain large object columns as
long as the database systems are enabled for large object support. However, large object
columns cannot be restored on a system that uses a hash function that is different than the one
used for the archive.

An archive of selected partitions with LOBs is supported, but the restore is not. To restore
selected partitions of LOBs, perform a full-table restore.

Archiving Non-Hashed and Partially Loaded Tables

Each table has information about itself stored in a special row called a table header. Table
headers are duplicated on all AMPs.

An archive operation captures only table headers for:

• Nonhashed tables

• Tables with loading in progress by the FastLoad or MultiLoad utilities. When these tables
are restored, Teradata ARC restores them empty.

Encrypting Archived Data

To provide enhanced security, database data can be encrypted prior to being stored in an
archive file. To enable this feature, specify a data encryption extension module prior to using
ARCHIVE.

Chapter 2: Archive/Recovery Operations
Archiving Online

38 Teradata Archive/Recovery Utility Reference

There are two ways to request data encryption:

• Specify the DEMODULE and DEPARM runtime parameters on the command
line when executing an archive job.

• Specify ENABLE DATA EXTENSION or ENABLE ENCRYPTION in the archive
script.

Archiving Online

Online archiving allows concurrent updates to tables during the archive process. Any updates
during the archive are logged so that they can be rolled back to a consistent point during a
restore.

There are different ways to start and stop online archiving. Use the ONLINE keyword in the
ARCHIVE statement or the LOGGING ONLINE ARCHIVE ON and LOGGING ONLINE
ARCHIVE OFF statements.

The ONLINE keyword in the ARCHIVE statement specifies objects to be archived online.
Then, Teradata ARC automatically enables and disables logging as necessary. This method can
be used for all-AMP archives.

The LOGGING ONLINE ARCHIVE ON statement explicitly starts online logging for one or
more objects in the system. Subsequent ARCHIVE statements on these objects will perform
an online archive, allowing concurrent updates. Use this method for cluster archives.

The LOGGING ONLINE ARCHIVE OFF statement stops online logging on the specified
objects. This statement must be submitted for all objects after the online archive is complete if
the LOGGING ONLINE ARCHIVE ON statement was used, or if an online archive job fails. If
LOGGING ONLINE ARCHIVE OFF is not submitted, logging will continue on the objects
indefinitely.

Determining Whether Online Archive Logging is in Use

To determine which tables and databases are currently being logged for online archive, run a
query against the ArchiveLoggingObjsV view. An example of a query is:

select CreateTimeStamp,
 DatabaseName (VARCHAR(30)),
 TVMName (VARCHAR(30))
from DBC.ArchiveLoggingObjsV;

 *** Query completed. One row found. 3 columns returned.
 *** Total elapsed time was 1 second.

 CreateTimeStamp DatabaseName TVMName
------------------- ------------------------------ ---------------------

2007-04-27 16:57:37 jmd t1

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

Teradata Archive/Recovery Utility Reference 39

Restoring Tables and Databases

A restore operation transfers database information from archive files on the client to one of
the following:

• Database DBC

• Database SYSUDTLIB

• User Database or Table

• All AMPs

• Clusters of AMPs

• Specified AMPs

Because an archive of database DBC contains the definition of all user databases in the
Teradata Database, restoring database DBC to the Teradata Database automatically defines for
that system the user databases from a database DBC archive.

Restoring database DBC also restores database SYSUDTLIB automatically. SYSUDTLIB
contains the definition of all UDTs defined in the system.

These types of information are restored:

• An all-AMPs (dictionary) data tables archive of a user database contains all table, view,
macro, stored procedure, and trigger definitions in the database.

• An all-AMPS restore of a database archive automatically restores all data tables, views,
macros, stored procedures, and triggers from the archive. Similarly, a restore of a
dictionary archive restores the definitions of all data tables, views, macros and triggers, and
the dictionary entries for stored procedures. But it does not restore any data.

• An all-AMPS restore of selected partitions restores only the partitions specified by the
PARTITIONS WHERE condition. Dictionary, cluster, and journal restores are not
supported.

• Restores of selected partitions are always to existing tables, and certain changes to the
target table definition are allowed. For more information, see “Changes Allowed to a PPI
Table” on page 147.

• Secondary indexes are also updated for restores.

• UDFs

• UDTs

Conditions Needed for a Restore Operation

• Data Dictionary Definitions - Archived table and databases can only be restored to a
Teradata Database if the data dictionary contains a definition of the entity to be restored.

• Locks - Because Teradata ARC uses a utility (HUT) lock, a single user cannot initiate
concurrent restore tasks. The Teradata ARC lock avoids possible conflicts when releasing
locks. To restore concurrently, supply a separate user identifier for each restore task.

For restores of selected partitions, Teradata ARC applies a HUT write lock.

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

40 Teradata Archive/Recovery Utility Reference

• UtilVersion Match - To restore selected partitions, the archive UtilVersion must match the
UtilVersion on the target system if they are both non-zero. If UtilVersion is zero on the
archive, the Version on the archive must match the UtilVersion on the target system. For
more information, see “Archiving Selected Partitions of PPI Tables” on page 30.

Considerations Before Restoring Data

Before performing a restore operation, consider the following items. For a list of potential
issues regarding the archiving of selected partitions, see “Potential Data Risks When
Archiving/Restoring Selected Partitions” on page 33.

• Dropped Database and Users - A restore of a database DBC drops all new databases or
users created since the time the archive was created. Additionally, all new UDTs are
dropped (because database SYSUDTLIB will also be restored with database DBC).

• Dropped Tables, Views, and Macros - A restore of a user database drops any new tables,
views, macros, stored procedures, triggers, or UDFs created since the archive of the
database.

• Restoring Undefined Tables with COPY - Because of potentially conflicting database and
table internal identifiers, you cannot restore a database or table to another system that
does not contain an equivalent definition of the entity (for example, the same name and
internal identifier). To restore data tables that are not already defined in the data
dictionary, use the COPY statement.

• Insufficient Memory for Large Tables - Teradata ARC uses the same methodology as the
Teradata SQL CREATE INDEX function to rebuild secondary table indexes. If there is
insufficient available disk space, it may not be possible to restore a very large table because
of the amount of temporary disk space that is required to recreate a secondary index.

• Join Indexes - Teradata ARC does not archive or restore join indexes. If a database
containing a join index is restored, then the join index will no longer exist when the restore
operation is complete. If a partial database restore is done where a table is restored, any
join indexes that reference that table will be marked as invalid.

A warning occurs when a SHOW JOIN INDEX request is performed on an invalidated
join index. A HELP DATABASE request lists both valid and invalid join indexes, but it will
not indicate which join indexes are invalid. To re-create the join index:

a Extract the join index definition from the SHOW JOIN INDEX output.

b Drop and re-create the join index.

c Collect new statistics.

• Matching Hash Functions for Large Objects - Teradata ARC supports the restore
operation for tables that contain large object columns as long as the database system is
enabled for large object support. However, large object columns cannot be restored on a
system that uses a hash function that is different than the one used for the archive.

• Certain Statements Force the Restoration of the Entire Database - A Teradata SQL
DROP or RENAME statement cause the definition of an entity to be removed from the
dictionary, and this same definition cannot be re-created using a Teradata SQL CREATE
statement because a create operation is a new logical definition.

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

Teradata Archive/Recovery Utility Reference 41

As a result, you cannot restore a dropped table unless you restore the entire database.
Furthermore, you cannot restore a dropped database unless you restore database DBC
first. A Database DBC archive must also have a definition of the dropped database in it.

Consequently, it is recommended that you archive individual tables with care, and that you
periodically archive the dictionary as well.

If you need to restore all of a user database or database DBC (that is, all of the Teradata
Database) because of a catastrophic event, you can restore the dictionary information for
the database at the database level before you restore the individual tables. Restoring the
dictionary first restores the table definitions, so you are able to successfully restore the
tables.

Restoring the Database DBC

Before restoring database DBC:

1 Reconfigure the system from a single AMP to the desired configuration.

2 Run the DBC Initialization Procedure (DIP) to initialize system views, macros, users, and
error messages tables. (See the software release cover letter for information on running
DIP.)

3 If user tables, views, macros, stored procedures, triggers, or UDFs are defined in the
Teradata Database, drop them before restoring database DBC. Use the following statement
to drop all such objects, except for permanent journal tables:

DELETE DATABASE (DBC) ALL, EXCLUDE (DBC);

This DELETE DATABASE statement also deletes all UDTs from the SYSUDTLIB database.

To drop permanent journal tables, use either the MODIFY USER or MODIFY
DATABASE statement. (See the MODIFY DATABASE/USER descriptions in SQL
Reference: Data Definition Statements.)

Interrupted or Failed Restores

If a restore of database DBC or SYSUDTLIB is interrupted for any reason, the entire restore
must be performed again. You cannot restart a restore operation on database DBC or
SYSUDTLIB. If the restore of database DBC or SYSUDTLIB is interrupted, reinitialization of
the database and disks with the database software and dictionary tables might be involved (in
some cases) prior to rerunning the restore of database DBC or SYSUDTLIB.

Migration Scripts

If you are migrating across a major Teradata release, it might be necessary to run a migration
script after restoring database DBC. To learn how a typical archive script performs its
operation, see the sample scripts in the Teradata Database migration documentation for your
database version.

If a migration script is needed, Teradata ARC prints a message that specifies a script that needs
to be run, and automatically exits. If this occurs, immediately start the specified script before
continuing with the restore of the Teradata system. If the migration script fails or is
interrupted, re-initialize the system, and restart the migration from the beginning.

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

42 Teradata Archive/Recovery Utility Reference

System Upgrades

If you are upgrading a system, you might need to run conversion utilities. See the Teradata
DBS for UNIX Field Support Guide for more information.

Restoring a User Database or Table

All-AMPs Restore of a Complete Database

An all-AMPs restore of a complete database from an archive of a complete database:

1 Drops all tables, views, macros, stored procedures, triggers, join indexes, hash indexes, and
user-defined functions in the Database resident version of the database,

2 Restores all tables, views, macros, stored procedures, triggers, and user-defined functions
in the archive.

All-AMPs Restore of a Selected Table

An all-AMPs restore of a selected data table from an archive of a complete database restores
only the dictionary rows and data for the requested table. Other data tables, views, macros,
stored procedures, triggers, join index, hash indexes, and user-defined functions in the
database are not restored.

All-AMPs Restore of a Full Database from a Selected Table Archive

An all-AMPs restore of a full database from an archive that was created for specific data tables
restores only the dictionary rows and data for the tables that were originally archived.

Restoring Selected Partitions

Selected partitions can be directly backed up and restored with a PARTITIONS WHERE
option that restricts the list of rows processed. The PARTITIONS WHERE option operates on
complete table partitions. A RESTORE (or COPY) operation wipes out selected partitions
(specified by the PARTITIONS WHERE option) of an existing target table before recovering
the rows stored on the backup tape. For the most part, a backup operation on selected
partitions is allowed with the same all-AMP BAR styles as for full tables.

Restoring selected partitions is affected by the maintenance activities that can occur on a table.
For example, a user can add or delete a column, add or delete a secondary index, or change the
partitioning expression.

If a selected partition was archived prior to one of these changes, you may or may not be able
to restore that partition back to the table. You are allowed to restore selected partition data
back to a table even is the target table has some characteristics that are different from the
source stored on tape. However, not all changes are allowed and some will prevent the
restoration of the selected partition data. For a list of acceptable and non-acceptable
differences, see “Changes Allowed to a PPI Table” on page 147 and “Restrictions on Archiving
Selected Partitions” on page 146.

For an overview of backing up partitioned data with Teradata ARC, see “Archiving Selected
Partitions of PPI Tables” on page 30.

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

Teradata Archive/Recovery Utility Reference 43

For a complete discussion of the keywords for restoring partitioned data, see “Archiving
Selected Partitions of PPI Tables” on page 146.

All-Amps Restore of Selected Partitions

The following options restore partitioned data:

• PARTITIONS WHERE specifies the conditional expression that determines which rows to
restore to the table. This option can only be used if the following conditions are true:

• The object is an individual table rather than a database.

• The source and target tables have a defined PARTITIONS BY expression.

• The restore is an all-AMP restore.

• The table is excluded from the database object (via EXCLUDE TABLES) if the table
belongs to a database object that is specified in the RESTORE script.

• LOG WHERE allows you to conditionally insert (log) archived rows that fall outside the
partitions specified by the PARTITIONS WHERE conditional expression into a Teradata-
generated error table. Teradata ARC inserts into the error table any rows that both match
the LOG WHERE conditional expression and fall outside the partitions specified by the
PARTITIONS WHERE conditional expression.

Error Table Name and Structure

The restore/copy process for selected partitions creates Teradata-generated error tables. Rows
are stored in error tables for the following reasons:

• A row that is in the range of selected partitions being restored fails the target table integrity
checks

• A user does not want to restore a row but it satisfies the LOG WHERE condition

• An error occurs while evaluating these conditions for a row

The restore/copy process for selected partitions creates an error table with the following
characteristics:

• If a database name is not specified (either in the ERRORDB option or as a database
qualifier of the error table name in the ERRORTABLES option), the error table resides in
the same database as the target table being restored or copied; otherwise, the error table
resides in the specified database.

• If the error table name is not specified (in the ERRORTABLES option), the error table has
the name RS_targettablename truncated on the right as needed to 30 characters; if
truncated, a warning message is issued. For example, if restoring table TB1, the default
name for the error table is RS_TB1.

• If a table has the same name as an existing error table in a database, an error occurs. Before
the restore/copy job can be submitted, this table must be dropped, renamed, or another
table or database name specified. Review the contents of the existing table to determine
whether to drop it:

• If it is an error table, review for logged errors

• If it is not an error table, consider using a different database or renaming for the error
table

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

44 Teradata Archive/Recovery Utility Reference

• If the error table is empty when the restore/copy job for the target table finishes, it is
dropped.

Note: Do not share an error table between two or more restore/copy jobs. Each table
targeted by a restore/copy job must have its own error table to ensure jobs run correctly.

Note: Do not drop the error table until the restore/copy job finishes. The error table must
not exist for non-restart of restore/copy job. It must already exist for a restart of restore/
copy job.

• An error table includes the following:

• All columns have the same data types and attributes as the target table except for
column-level integrity constraints and not null attributes.

• DBCErrorCode has INTEGER data type, not null. It indicates the Teradata error
causing the row to be inserted into the error table.

• DBCOldROWID has BYTE(10) data type, not null. It indicates the internal partition
number, row hash, and row uniqueness value of the row at the time the backup was
created.

• An error table has the same FALLBACK or NO FALLBACK protection type as the
associated target table.

• An error table is always a SET table even if the target table is a MULTISET table. Duplicate
rows are discarded.

• The primary index of an error table is non-unique and is not partitioned. The primary
index columns are identical to the primary index columns of the target table.

• An error table does not have any of the NOT NULL, table-level, or column-level integrity
constraints of the target table. This is to ensure that rows can be inserted into the error
table that might fail the integrity constraints.

• An error table does not have any secondary indexes or participate in any referential
integrity relationships.

For example, assume that selected partitions of the following target table are being
restored:

CREATE TABLE SalesHistory
(storeid INTEGER NOT NULL,
productid INTEGER NOT NULL CHECK(productid > 0),
salesdate DATE FORMAT 'yyyy-mm-dd' NOT NULL,
totalrevenue DECIMAL(13,2),
totalsold INTEGER,
note VARCHAR(256))

UNIQUE PRIMARY INDEX (storeid, productid, salesdate)
PARTITION BY RANGE_N(salesdate BETWEEN

DATE '1997-01-01' AND DATE '2000-12-31'
EACH INTERVAL '7' DAY)

INDEX (productid)
INDEX (storeid);

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

Teradata Archive/Recovery Utility Reference 45

The restore job creates the following error table by default. The bold text points out
pertinent differences from the target table definition.

CREATE SET TABLE RS_SalesHistory, FALLBACK
(storeid INTEGER,
productid INTEGER,
salesdate DATE FORMAT 'yyyy-mm-dd',
totalrevenue DECIMAL(13,2),
totalsold INTEGER,
note VARCHAR(256),
DBCErrorCode INTEGER NOT NULL,
DBCOldROWID BYTE(10) NOT NULL)

PRIMARY INDEX (storeid, productid, salesdate)

Restoring from a Dictionary Archive

If you restore a database from a dictionary archive created by specifying individual tables, only
the dictionary rows for the specified tables are restored. Table 4 alphabetically lists the
dictionary rows that are restored by an all-AMPs data restore or a dictionary tables restore of a
user database.

Table 5 lists the dictionary table rows that are restored by an all-AMPs restore of a specific user
data table or journal table.

Restoring from a Journal Archive

If you restore an all-AMPs archive of a journal table, the restored permanent journal goes to a
different subtable than the journal currently writing the updates.

Table 4: User Database Data Dictionary Rows Restored

Table Rows Description

Indexes Definition of all indexed columns in the data tables and views

IndexName Definition of named indexes in the table

TVM Definition of all data tables, views, macros, stored procedures, triggers,
and UDFs in the database

TVFields Definition of all columns in the data tables, views, macros, stored
procedure parameters, and UDFs.

TriggersTbl Definition of all triggers in the database

Table 5: User Table Dictionary Rows Restored

Tables Rows Description

Indexes Columns in tables that are indexes

IndexName Indexes in the table that have names

TVM Table names

TVFields Columns for the table

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

46 Teradata Archive/Recovery Utility Reference

A restored journal overlays any change images that were restored to the same AMPs. During
normal processing, the Teradata Database writes after-change images to a different processor
than the one with the original data row. When you restore after-change images from an
archive, these rows are written to the processor that contains the data row to which the change
applies.

Restoring With All AMPs Online

You can restore even if AMPs are added to or deleted from the configuration after the archive.

Example

This example restores all databases with all AMPs online and assumes that none of the
databases have journal table definitions. Journal tables must be dropped before running this
job.

LOGON DBC,DBC;
DELETE DATABASE (DBC) ALL, EXCLUDE (DBC);
RESTORE DATA TABLES (DBC) ALL,

RELEASE LOCK,
FILE=ARCHIVE;

LOGOFF;

The DELETE DATABASE statement is included so that only the tables in database DBC are
present. If the DELETE statement is omitted, the restore cannot finish.

When the operation is complete, check the print file to verify that all AMPs involved in the
restore process remained online. If one or more AMPs went offline, see “Restoring With AMPs
Offline” on page 48 for more information.

Restoring with a Specific-AMP Archive

Before you restore database DBC:

1 Reconfigure the system from a single AMP to the desired configuration.

2 Run the DBC Initialize Procedure (DIP) to initialize system views, macros, triggers, users,
and error messages tables.

Example

This example demonstrates how to restore all databases from an all-AMPs archive and a
specific-AMP archive. All AMPs are online for the restore, although AMPs may have been
added to or deleted from the configuration since the archive was taken.

This example assumes that none of the databases have journal table definitions. Journal tables
must be dropped before running this job.

LOGON DBC,DBC;
DELETE DATABASE (DBC) ALL, EXCLUDE (DBC);
RESTORE DATA TABLES (DBC),
 FILE=ARCHIVE;
RESTORE DATA TABLES (DBC) ALL,
 EXCLUDE (DBC),
NO BUILD,
FILE=ARCHIVE;

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

Teradata Archive/Recovery Utility Reference 47

RESTORE DATA TABLES (DBC) ALL,
 EXCLUDE (DBC),
NO BUILD,
FILE=ARCHIVEX;
BUILD DATA TABLES (DBC) ALL,
 EXCLUDE (DBC),
 RELEASE LOCK;
LOGOFF;

In this example, file ARCHIVE is an all-AMPs archive; ARCHIVEX is a single AMP archive.

When the restore is complete, check the print file to verify that all AMPs remained online
throughout the process. If one or more AMPs went offline, see “Restoring With AMPs
Offline” on page 48 for more information.

To decrease the total time required to complete the restore process, specify the NO BUILD
option for the restore operation, then submit a BUILD statement after the specific-AMP
restore. In addition, unique secondary indexes remain valid on nonfallback tables.

Restoring Using the EXCLUDE Option

Before you restore database DBC:

1 Reconfigure the system from a single AMP to the desired configuration.

2 Run the DBC Initialize Procedure (DIP) to initialize system views, macros, triggers, users,
and error messages tables.

3 Use the EXCLUDE option to:

• Make one database, ADMIN, and its descendants available first; and make the other
databases in the system available immediately thereafter.

• Exclude one large database, U12, from being restored.

Example

In this example, an entire system is restored from an all-AMPs archive and one specific AMP
archive. File ARCHIVE is an all-AMPs archive; ARCHIVEX is a single AMP archive:

LOGON DBC,DBC;
DELETE DATABASE (DBC) ALL, EXCLUDE (DBC);
RESTORE DATA TABLES (DBC),
 FILE=ARCHIVE;
RESTORE DATA TABLES (ADMIN) ALL,
NO BUILD,
FILE=ARCHIVE;
RESTORE DATA TABLES (ADMIN) ALL,
NO BUILD,
FILE=ARCHIVEX;
BUILD DATA TABLES (ADMIN) ALL,
 RELEASE LOCK;
RESTORE DATA TABLES (DBC) ALL,
EXCLUDE (ADMIN) ALL,(U12),(DBC),
NO BUILD,
FILE=ARCHIVE;
RESTORE DATA TABLES (DBC) ALL,
EXCLUDE (ADMIN) ALL,(U12),(DBC),
NO BUILD,

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

48 Teradata Archive/Recovery Utility Reference

FILE=ARCHIVEX;
BUILD DATA TABLES (DBC) ALL,
 EXCLUDE (ADMIN) ALL,(U12),(DBC),
 RELEASE LOCK;
LOGOFF;

When the operation is complete, check the output to verify that all AMPs remained online
during the restore.

Restoring With AMPs Offline

Restoring a Table with Fallback

If you restore a data table with fallback from an all-AMPs data tables or cluster archive while
one or more AMPs are offline, Teradata ARC generates the information to restore the data on
the offline AMPs when they return to operation. The system recovery process restores the
offline AMPs when they return to online status.

Restoring a Table Without Fallback

If you restore a data table without fallback (or from a specific-AMP archive) while one or
more AMPs that must also be restored are offline, restore the data table to each of the offline
AMPs as soon as the AMPs come back online.

The exclusive utility lock is automatically placed on the data table for the all-AMPs restore and
on each offline processor when the AMPs return to an online status. The lock allows Teradata
ARC to finish the restoring process before the table can be accessed.

Unique Secondary Indexes

If you restore a table without fallback and with AMPs offline, unique secondary indexes
defined for the table are invalidated. This prevents future updates to the table until you
regenerate the unique secondary indexes either by dropping and recreating them or by using
the BUILD statement.

Restoring Change Images

The Teradata Database always restores change images to the AMP that contains the data row,
unless the row is from a single after-image journal. If a journal table contains change images
for data tables with fallback, the database automatically creates the change images necessary
for the offline AMPs when a recovery operation uses the restored journal.

If the journal table contains change images for tables without the fallback option, repeat the
journal table restore for any offline AMPs when they return to online status. Any recovery
activity using the restored journal must be repeated when the AMPs return to online status.

Restoring With One AMP Offline

The restore operation can occur even if AMPs have been added to or deleted from the
configuration since the archive was taken.

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

Teradata Archive/Recovery Utility Reference 49

To restore with an AMP offline:

1 Reconfigure the system from a single AMP to the desired configuration (optional).

2 Run the DBC Initialization Procedure (DIP) to initialize system views, macros, triggers,
users, and error messages tables. See the software release cover letter for information on
running DIP (optional).

3 Restore all AMPs by performing the operation described in “Restoring With All AMPs
Online” on page 46.

4 When the offline AMP is returned to online operation, perform a specific-AMP restore for
that AMP.

Example

This example performs a specific-AMP restore for an AMP that was offline during the all-
AMP restore.

LOGON DBC,DBC;
RESTORE NO FALLBACK TABLES (DBC) ALL,

AMP=1,
EXCLUDE (DBC),
RELEASE LOCK,
FILE=ARCHIVE;

LOGOFF;

When the operation is complete, check the print file to verify that all AMPs remained online
during the restore. If one or more AMPs went offline, see “Restoring With AMPs Offline” on
page 48 for more information.

To decrease the total time required to complete the restore process, specify the NO BUILD
option for the restore operation, then submit a BUILD statement after the specific AMP
restore. In addition, unique secondary indexes remain valid on nonfallback tables.

Restoring Cluster Archives

When you restore all AMPs from a cluster archive, you must first restore the dictionary
archive.

Restoring the dictionary archive does the following:

• Replaces the dictionary information for the tables, views, macros, stored procedures,
triggers, and UDFs being restored in database DBC dictionary tables.

• Deletes any data (excluding journals) that belong to the database or tables being restored.

• Prevents fallback tables that are being restored from accepting Teradata SQL requests.

• Prevents nonfallback tables with indexes that are being restored from accepting Teradata
SQL requests.

Remove tables from the restoring state with the BUILD DATA TABLES statement. This
statement also revalidates any existing secondary indexes. The build operation should follow
the restore of all cluster archives that represent the complete archive.

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

50 Teradata Archive/Recovery Utility Reference

Restoring Cluster Archives in Parallel

If you choose to restore cluster archives in parallel, execute multiple jobs at the same time.
Each of these jobs must have a different Teradata Database user identification because
Teradata ARC does not allow concurrent restore operations by the same user.

Exclusive Locks

Each cluster restore requests exclusive locks within the various clusters. Therefore, the locks
applied during the dictionary restore must be released prior to concurrent cluster restores.

Build Data Tables Operation

BUILD is run automatically for the primary data and all NUSIs. If the NO BUILD option is
specified for a cluster restore and USI exists on one or more objects, a separate BUILD must be
run on those objects after the entire cluster restore has completed. After you finish restoring
all cluster archives, perform the build data tables operation against the tables that were
restored. This generates the fallback copy of fallback tables and any indexes of fallback and
nonfallback tables.

Rollforward Operation

If the build operation completes the recovery process and you are not performing a
rollforward operation, you can release the locks.

If you need to do a rollforward, do it after the build operation using the guidelines described
in “Recovering Tables and Databases” on page 52.

To learn about the Rollforward operation, see “ROLLFORWARD” on page 208.

Example

This example shows how to restore a cluster. The procedure is divided into three steps. Run
Step 1 first, then run Steps 2 and 3 in parallel. Finally, run Step 4.

Job 1 LOGON USER1,USER1;
RESTORE DICTIONARY TABLES (USERDB),

RELEASE LOCK,
FILE=ARCHIVE;

LOGOFF;

Job 2 (run in parallel
with Job 3)

LOGON USER1,USER1;
RESTORE DATA TABLES (USERDB),

CLUSTER=0, 1,
FILE=ARCHIVE;

LOGOFF;

Job 3 (run in parallel
with Job 2)

LOGON USER2,USER2;
RESTORE DATA TABLES (USERDB),

CLUSTER=2, 3,
FILE=ARCHIVE;

LOGOFF;

Job 4 LOGON USER1,USER1;
BUILD DATA TABLES (USERDB),

RELEASE LOCK;
LOGOFF;

Chapter 2: Archive/Recovery Operations
Restoring Tables and Databases

Teradata Archive/Recovery Utility Reference 51

Restoring After a Reconfiguration

If you have added or dropped AMPs since the archive was created, restore cluster and specific
AMP archives to all AMPs. Because reconfiguration redistributes data among AMPs, rows in
the archive do not distribute exactly to the AMPs from which the rows came.

Order of Restores

To restore a cluster archive to a reconfigured Teradata Database, first restore the dictionary
archive and then individually restore each cluster archive to all AMPs. Only one restore
operation is permitted at a time.

NO BUILD Option

When restoring cluster archives to all-AMPs, use the NO BUILD option on each cluster
restore operation. If the NO BUILD option is omitted, Teradata ARC will print a warning and
enable the option automatically. After all the cluster archives have been restored, a BUILD
statement will need to be run.

If you restore an all-AMPs archive with nonfallback tables to all AMPs, and the all-AMPs
archive is missing an AMP that has a specific-AMP archive, restore the all-AMPs archive using
the NO BUILD option. In this case, nonfallback tables are not revalidated. Following
completion of the restore of the all-AMPs archive, restore the specific-AMP archive to all
AMPs. Then follow this specific-AMP archive restore with a build operation.

Logical vs. Physical Space

When restoring to a target system that is smaller than the source, the database space might be
reported as a negative value when the operation finishes. This indicates you have run out of
logical space, rather than physical space. If this occurs, reduce the perm space for some of the
databases created on the system by doing the following:

1 Reduce the maximum perm space of user databases and rerun RESTORE.

2 If negative space is reported again, reset the Teradata Database, run UPDATESPACE to
decrease the maximum perm space of user databases and rerun RESTORE.

Restoring with a Larger Number of AMPs

When running a complete restore (including database DBC) on a system with a larger number
of AMPs, Teradata ARC can sometimes return an error that indicates the user database is out
of space. This usually occurs only with databases that contain a large number of stored
procedures or tables with poorly distributed data.

The reason for the error is that the perm space for a database is divided evenly among the
AMPs on a system. When the target system has more AMPs, the perm space available on each
AMP is lower. Tables with poorly distributed data might exceed the perm space allocation for
one or more AMPs. If this error occurs, increase the perm space for the database and restart
the restore operation.

Note: A reconfiguration that defines fewer disks will always be logically smaller than the
original, even if it uses the same number of AMPs. To prevent the restore from resulting in

Chapter 2: Archive/Recovery Operations
Recovering Tables and Databases

52 Teradata Archive/Recovery Utility Reference

negative database space, reduce the maximum perm space of user databases before initiating a
restore operation.

Restoring a Specific AMP

Each table has information about itself stored in a special row called a table header. Table
headers are duplicated on all AMPs.

A request for a specific-AMP restore of a table is only allowed on tables without the fallback
option. This type of restore is accepted only if a table header for the table already exists on the
specified AMP. If a header does not exist, Teradata ARC rejects your request.

If you are restoring a single processor restoring after a disk failure, use the TABLE REBUILD
utility to create the header for the table.

If a header already exists for the table, it must have the same structure as the header on the
archive. If you change the definition of the table without rerunning the archive, Teradata ARC
rejects the restore request.

Any data definition statement (for example, MODIFY TABLE or DROP INDEX) that you
execute for a table also changes the structure (table header) of the table.

If the header structures match, Teradata ARC makes another check for invalid unique
secondary indexes for the table. This check ensures that the specific AMP restore does not
create a mismatch between data rows and secondary index rows.

If Teradata ARC finds any valid unique secondary indexes, it invalidates them automatically
on all AMPs. An all-AMPs restore of such a table invalidates any unique secondary indexes on
the table.

Restoring Encrypted Data from an Archive File

When the data in an encrypted archive file is restored, Teradata ARC automatically loads the
data encryption module and algorithm that were used to originally encrypt the data. The data
is decrypted after it is read from the archive file, and restored to the database as unencrypted
data.

Recovering Tables and Databases

Teradata ARC provides functions to roll back or roll forward databases or tables from a
journal table. To identify the databases and/or data tables to recover, use a Teradata ARC
statement. If you specify multiple databases or data tables, they must all use the same journal
table because a single recovery operation only uses change images from one journal.

A Teradata ARC statement also identifies whether the restored or current journal subtable is to
be used in the recovery activity.

If you must recover data tables from more than one archived journal, perform the recovery
operation in a series of three-step operations.

Chapter 2: Archive/Recovery Operations
Recovering Tables and Databases

Teradata Archive/Recovery Utility Reference 53

1 Restore an archived journal.

2 Recover the data tables using the restored journal.

3 Repeat steps 1 and 2 until all the tables are recovered.

Teradata ARC completes the requested recovery action as long as the table structure is the
same as the structure of the change images. If the structures are not the same, Teradata ARC
stops the requested recovery for the data table and returns an error message. When recovering
multiple tables, the stopped recovery of one table does not affect recovery of the other tables.

The Teradata Database does not generate transient journal images during a rollback or
rollforward operation. If the rollback or rollforward operation is not completed, the data
tables being recovered are left in an unknown state.

If the rollback or rollforward is not completed because of a hardware failure, Teradata ARC
automatically restarts the recovery operation.

If the rollback or rollforward operation is not completed because of a client failure, resubmit
Teradata ARC with the RESTART option. If you release the HUT locks on the data tables prior
to restarting and completing the Teradata ARC rollback or rollforward operation, the state of
the data is unpredictable.

The Teradata Database does not generate permanent journal images during a rollback or
rollforward operation. Consequently, a rollback operation might not be completed properly.

For example, assume:

1 A batch job updates a data table and creates both before- and after-images.

2 The batch job finishes.

3 Later (because of an error in the batch update) you roll the table back using the before-
images.

4 A disk is replaced and you restore the most recent archive. You perform a rollforward to
incorporate any changes that have occurred since the archive was created.

If the same journal that was used in the rollback described above is used in the rollforward,
you might expect that the updates created by the batch job would not be reapplied since a
rollback of the batch job had been done. Instead, the Teradata Database does not modify a
journal table as the result of a recovery operation and the updates executed by the batch
program are reapplied to the data tables during the rollforward.

Recovering With Offline AMPs

If you perform a recovery while AMPs are offline and the tables being recovered have fallback,
the Teradata Database automatically generates the necessary information to recover the tables
when the offline AMPs come back online. However, if the recovery includes tables without
fallback, or if the recovery is from a cluster archive, you must restart recovery when the AMPs
come back online.

Be especially careful of performing a rollforward operation on tables without fallback and
with a single (local or remote) journal. If this type of operation uses the current journal as
input with an offline AMP, the AMP that uses the offline AMP as its backup is not rolled

Chapter 2: Archive/Recovery Operations
Copying Tables and Databases

54 Teradata Archive/Recovery Utility Reference

forward. However, if you specify the RELEASE LOCK option on the rollforward operation,
then HUT locks are released on all AMPs except those that are down and nonfallback tables
that have single after images and a down backup.

A similar option, the BACKUP NOT DOWN option, is available for the RELEASE LOCK
statement.

Roll forward nonfallback tables with HUT locks remaining (because of a down backup AMP)
when the down AMP is brought back online. Also, roll forward the down AMP when you
bring it back online.

Recovering a Specific AMP

If you restore a nonfallback table with after-image journaling to a specific AMP after a disk
failure, use a ROLLFORWARD statement followed by a BUILD statement of the nonfallback
table.

If the nonfallback table has unique indexes, rollforward time may be improved by using the
PRIMARY DATA option. This option instructs the rollforward process to skip unique
secondary index change images in the journal. Because these indexes would be invalid from
the specific-AMP restore operation, the PRIMARY DATA option might save a significant
amount of I/O. Revalidate the indexes following the rollforward with the BUILD statement.

Copying Tables and Databases

Teradata ARC enables you to copy (or restore) a table or database to a different Teradata
Database environment. Use the COPY statement to:

• Replace a table in a target database

• Create a table in a target database

• Move an archived file to a different Teradata Database other than the one from which the
archive was made

• Move an archived file to the same Teradata Database from which the archive was made

Copy vs. Restore

The difference between copy and restore depends on the kind of operation being performed:

• A restore operation moves data from archived files back to the same Teradata Database
from which it was archived or moves data to a different Teradata Database so long as
database DBC is already restored.

• A copy operation moves data from an archived file to any Teradata Database and creates a
new table if one does not already exist on the target database. When you copy selected
partitions, the table must exist and be a table that was previously copied as a full-table
copy.

Chapter 2: Archive/Recovery Operations
Copying Tables and Databases

Teradata Archive/Recovery Utility Reference 55

Conditions for Using the COPY Statement

It is possible to create tables with different names using a COPY statement. For database-level
copy operations, you can copy to a database with a different name.

To use the COPY statement, these conditions must be met:

• You must have restore access privileges on the target database or table to be able to use the
COPY statement.

• A target database must exist to copy a database.

• If you copy a single table that does not exist on the target system, you must have both
CREATE TABLE and RESTORE database access privileges for the target database.

• If the archived database contains a journal table that needs to be copied, the target
database must also have a journal table.

Copying Database DBC

Do not use database DBC as the target database name in a COPY statement. You can use DBC
as the source database in a COPY FROM statement, but you must specify a target database
name that is different than DBC. This allows you to copy DBC from a source system to a
different database on a target system. When used as the source database in a COPY FROM
statement, database DBC is not linked to database SYSUDTLIB. Therefore, only database
DBC is copied.

Copying Database SYSUDTLIB

Do not use database SYSUDTLIB as the target database name in a COPY statement. You can
use SYSUDTLIB as the source database in a COPY FROM statement, but you must specify a
target database name that is different than SYSUDTLIB. This allows you to copy SYSUDTLIB
from a source system to a different database on a target system. When used as the source
database in a COPY FROM statement, database SYSUDTLIB is not linked to database DBC.
Therefore, only database SYSUDTLIB is copied.

Copying Data Table Archives

Always copy data tables before you copy any associated journal tables. When you copy a data
table to a new environment, Teradata ARC creates a new table or replaces an existing table on
the target Teradata Database. The COPY statement can only replace existing permanent
journal tables; it cannot create permanent journal tables. For data table archives, note the
following:

• If the target database does not have tables with the intended names, the copy operation
creates them.

• If the target database has tables with the intended names, then they are replaced by the
archived table data. Both the existing table data and table definition are replaced by the
data from the archive.

Chapter 2: Archive/Recovery Operations
Copying Tables and Databases

56 Teradata Archive/Recovery Utility Reference

When copying data tables, you can:

• Disable journaling

• Specify a journal table in a database different from the database that is receiving the table

• Change a fallback table to a nonfallback table

Copying Selected Partitions

Copying selected partitions in a PPI table works the same way as restoring selected partitions.
For more information, see “Archiving Selected Partitions of PPI Tables” on page 30.

HUT Locks in Copy Operations

Copy operations apply exclusive utility (HUT) locks on the object to be copied. Therefore, if
you copy a full database from a complete database archive, Teradata ARC locks the entire
database. Similarly, if you copy a single table from a table-level archive, Teradata ARC locks
that table (but only that table). To copy selected partitions, Teradata ARC applies a HUT write
lock.

Copying Large Objects (LOBs)

Teradata ARC supports copying tables that contain large object columns as long as the
database systems are enabled for large object support and the copy is not for selected
partitions. However, large object columns cannot be restored on a system that uses a hash
function that is different than the one used for the archive. To copy an archive of selected
partitions of LOBs, perform a full-table copy.

COPY Examples

The following examples illustrate data and journal table copies to all AMPs. Examples include
copying:

• A table to a different configuration

• A data table to a new database

• A table to a new table or database

• A database to a new database

• Two databases with fallback

• A journal table from two archives

Copying a Table to a Different Configuration

An archived data table named Personnel.Department is copied to a different Teradata
Database in this example:

COPY DATA TABLE (Personnel.Department)
,FILE = ARCHIVE;

In the example:

• The table has the same name in the target database that it had in the archived database,
and it belongs to a database named Personnel on the target Teradata Database.

Chapter 2: Archive/Recovery Operations
Copying Tables and Databases

Teradata Archive/Recovery Utility Reference 57

• If a database named Personnel does not exist on the target Teradata Database, Teradata
ARC rejects the copy operation.

• If a table named Personnel.Department does not exist in the target database, Teradata ARC
creates one.

• If the data table being restored has permanent journaling on the source system, it has
permanent journaling on the target system as well.

• If Teradata ARC creates a new table for the copy operation, the target journal table is the
default journal for database Personnel. Otherwise, the target journal table is the journal
table associated with the table that is being replaced on the target system.

• If Teradata ARC creates a new table for the copy operation and if the Personnel database
does not have a default journal, then Teradata ARC rejects the copy operation.

Copying a Data Table to a New Database

In this example, an archived data table is copied under a new database name to a different
Teradata Database:

COPY DATA TABLE (Personnel.Department)
(FROM (OldPersonnel), NO JOURNAL, NO FALLBACK)
,FILE = ARCHIVE;

In this example:

• The new database name is Personnel; the old database name is OldPersonnel. In both
databases, the table name is Department.

• If a database named Personnel does not exist in the target system, Teradata ARC rejects the
copy operation.

• If a data table named Department does not exist in the Personnel database on the target
system, Teradata ARC creates one with that name.

• The NO JOURNAL option indicates that you do not want this table to have permanent
journaling in the target database.

• The NO FALLBACK option indicates that the new table is to be nonfallback on the target
system, even if it was a fallback table on the archived system.

Copying a Table to a New Table or Database

An archived data table is copied under new database and table names to a different Teradata
Database in this example:

COPY DATA TABLE (Personnel.Department)
(FROM (OldPersonnel.Dept)
,WITH JOURNAL TABLE = PersonnelJnlDB.PermanentJournal
,NO FALLBACK)
,FILE = ARCHIVE;

In the example:

• The new database name is Personnel; the old database name is OldPersonnel. The new
data table name is Department; the old data table name is Dept.

• If a database named Personnel does not exist in the target system, Teradata ARC rejects the
copy operation.

Chapter 2: Archive/Recovery Operations
Copying Tables and Databases

58 Teradata Archive/Recovery Utility Reference

• If a data table named Department does not exist in the Personnel database on the target
system, Teradata ARC creates one with that name.

• The WITH JOURNAL option indicates to carry journaling over from the old Teradata
Database to the new Teradata Database for this table. In the example, the user copies
journal images into the permanent journal table named
PersonnelJnlDB.PermanentJournal.

• The NO FALLBACK option indicates that the new table is to be nonfallback on the target
system, even if it was a fallback table on the archived system.

• If the table was nonfallback on the archive, then it retains its journaling options on the
target system (that is, the journal options do not change).

• If the table was fallback on the archive, then its images are dual on the target system.

Copying a Database to a New Database

In this example, an archived database is copied with a new name to a different Teradata
Database:

COPY DATA TABLE (Personnel)
(FROM (OldPersonnel)
,WITH JOURNAL TABLE = PersonnelJnlDB.PermanentJournal
,NO FALLBACK)
,FILE = ARCHIVE;

In the example:

• The new database name is Personnel; the old database name is OldPersonnel.

• If a database named Personnel does not exist in the target system, Teradata ARC rejects the
copy operation.

• The WITH JOURNAL option indicates to carry journaling over from the old Teradata
Database to the new Teradata Database for any tables in the copied database that have
journaling enabled on the archived system. In the example, the user copies journal images
into the permanent journal table named PersonnelJnlDB.PermanentJournal. Although the
tables are copied with the specified journal, the target database default does not change.

• The NO FALLBACK option indicates that the new table is to be nonfallback on the target
system, even if it was a fallback table on the archived system.

• If the table was nonfallback on the archive, then it retains its journaling options on the
target system (that is, the journaling options do not change).

• If the table was fallback on the archive, then its images are dual on the target system.

Although Teradata ARC copies the tables as nonfallback, the default for the target database
does not change. For example, if the database named Personnel is defined with fallback,
then the database keeps that default after the copy operation is complete. The NO
FALLBACK option applies only to the tables within the archive.

Chapter 2: Archive/Recovery Operations
Copying Tables and Databases

Teradata Archive/Recovery Utility Reference 59

Copying Two Databases With Fallback

Here, two databases are copied that have different fallback attributes:

COPY DATA TABLE (Personnel)
(FROM (OldPersonnel), NO FALLBACK)
,(Finance) (NO JOURNAL)
,FILE = ARCHIVE;

In the example:

• The database named Personnel is restored from an archived database named OldPersonnel
with all tables defined as nonfallback after the copy operation.

• The database named Finance is restored from an archived database also named Finance
with all journaling associated with its data tables disabled.

Copying a Journal Table From Two Archives

This example illustrates how a journal table that has some nonfallback images spread across
two separate archive files (because an AMP was down at the time of an all-AMPs archive
operation) is restored:

COPY JOURNAL TABLE (PersonnelJnlDB.PermanentJournal)
(APPLY TO (Personnel.Employee, Personnel.Department))
,NO BUILD
,FILE = ARCHIVE1;

COPY JOURNAL TABLE (PersonnelJnlDB.PermanentJournal)
(APPLY TO (Personnel.Employee, Personnel.Department))
,FILE = ARCHIVE2;

When restoring to a different configuration, Teradata ARC redistributes journal images
among all the AMPs. Teradata ARC builds the journal only after it completes the all-AMPs
data table archive operation.

To perform this operation:

• Copy the all-AMPs archive and specify the NO BUILD option.

• Copy the specific-AMP archive, but do not specify the NO BUILD option.

This operation is only allowed if the applicable data tables are already copied into the target
system. In the example, the archive of all AMPs (except the AMP that was offline) is called
ARCHIVE1. The archive of the AMP that was offline at the time of the main archive is called
ARCHIVE2.

Teradata ARC copies only checkpoint journal images and images associated with the tables
named Personnel.Employee and Personnel.Department to the target system. Teradata ARC
discards all other journal images.

Copying Encrypted Data from an Archive File

When the data in an encrypted archive file is copied, Teradata ARC automatically loads the
data encryption module and algorithm that was used to originally encrypt the data. The data
is decrypted after it is read from the archive file, and copied to the database as unencrypted
data.

Chapter 2: Archive/Recovery Operations
Using Host Utility Locks

60 Teradata Archive/Recovery Utility Reference

Using Host Utility Locks

A Host Utility (HUT) lock, also referred to as a utility lock in this book, is the lock that
Teradata ARC places when most Teradata ARC commands are executed. Exceptions are
CHECKPOINT, DELETE DATABASE, and DELETE JOURNAL. When Teradata ARC places
a HUT lock on a object, for example, with an ARCHIVE or RESTORE command, the
following conditions apply:

• HUT locks are associated with the currently logged-on user who entered the statement,
not with a job or transaction.

• HUT locks are placed only on the AMPs that are participating in a Teradata ARC
operation.

• A HUT lock that is placed for a user on an object at one level never conflicts with another
level of lock on the same object for the same user.

The ShowLocks utility, described in Utilities, shows the HUT locks that are currently applied
to a Teradata Database.

Transaction vs. Utility Locks

From a blocking perspective, the behavior of a HUT lock is the same as a transaction lock. For
example, a read lock prevents another job from claiming a write lock or exclusive lock.
Conversely, a write lock prevents a read lock, write lock, or exclusive lock. An exclusive lock
prevents any other type of lock. Conflicting HUT and transaction locks on an object block
each other, just as if both were transaction locks or both were HUT locks.

The two differences between transaction locks and HUT locks are:

• Permanence

A transaction lock exists only for the duration of a transaction; after the transaction
completes or is aborted, the lock is released. A HUT lock is more permanent. It is only
removed if an explicit RELEASE LOCK command is issued, or if the locking operation
(for example, execution of an ARCHIVE or RESTORE command) completes successfully
and has the RELEASE LOCK option specified. The lock remains even if the command
fails, the ARC job terminates, or if the Teradata system has a restart.

• Scope

A transaction lock has session scope, meaning that it applies to any command submitted
by the session running the locking transaction. Another session running against the same
object(s) must claim its own locks, even if it is running under the same user.

A HUT lock has user scope, meaning that it applies to any Teradata ARC operation that
the user is performing on the object. A user must have only one HUT lock against an
object at a time. The HUT lock allows any Teradata ARC operation from that user to access
the locked object(s), but blocks other users from acquiring a conflicting HUT lock on the
object(s). Additionally, the HUT lock blocks all conflicting transaction lock attempts on
the object, even if the transaction locks are from the same user. Because there is only one
HUT lock, a RELEASE LOCK operation for that user on an object always releases an
existing HUT lock, even if other jobs for that user are still accessing the object.

Chapter 2: Archive/Recovery Operations
Using Host Utility Locks

Teradata Archive/Recovery Utility Reference 61

Warning: Releasing a utility lock on a database or table that is being accessed by another Teradata ARC
job could result in data corruption and unexpected errors from ARCMAIN or the database.

HUT locks that are not released are automatically reinstated following a restart.

For information on transaction locking and processing, refer to SQL Reference: Statement
and Transaction Processing.

Teradata ARC Locks During an Archive Operation

A Teradata ARC operation locks objects that are being archived.

• When archiving an entire database, Teradata ARC places the read utility lock at the
database level before it archives any tables.

• When archiving individual tables, Teradata ARC places the read utility lock on each table
before it archives that table.

If you specify the RELEASE LOCK option on the ARCHIVE statement, Teradata ARC releases
the read utility lock when it successfully completes the archive of a database or table.
Therefore, only a full database archive creates consistency among tables archived from the
same database.

Group Read Lock

You can specify a group read HUT lock for tables that are defined with an after-image journal
option. If you are using the GROUP READ LOCK option to perform an online backup of a
database-level object, define after-journaling for every table in the database. This restriction
also applies to excluded tables; if a table is excluded as part of a database-level GROUP READ
LOCK archive, it must still have an after-journal table defined so ARC can accept the GROUP
READ LOCK option.

When you specify a group read HUT lock, the following events occur:

• The AMPs first place an access HUT lock on the entire affected table to prevent users from
changing the definition of the table (that is, DDL changes) while the table is being
archived.

• The AMPs then place a series of rolling read HUT locks on blocks of (approximately)
64,000 bytes of table data. Each AMP places a read HUT lock on a block of data while the
AMP sends the data block across the IFP or PE to the client.

When a block transmission finishes, the AMP releases the read HUT lock on that block and
places another read HUT lock on the next block of 64,000 bytes. The AMPs repeat this process
until they archive the entire table.

Concurrent Transactions: Archives and Updates

When an archive with a group read HUT lock is finished, the archive may contain partial
results of a concurrently executing update transaction. Consider the following example:

1 The archive operation reads row 1 and sends it to the client.

2 Transaction A reads and updates row 3.

3 The archive operation reads row 2 and sends it to the client.

Chapter 2: Archive/Recovery Operations
Using Host Utility Locks

62 Teradata Archive/Recovery Utility Reference

4 Transaction A reads and updates row 1.

5 Transaction A ends, releasing its HUT lock on rows 1 and 3.

6 The archive operation reads row 3 and sends it to the client.

The archive described above contains:

• A copy of row 3 after an update by transaction A, and

• A copy of row 1 before its update by the transaction.

For this reason, you must define an after-image permanent journal for tables you want to
archive using a group read HUT lock. After the archive finishes, archive the corresponding
journal. The after-images on the journal archive provide a consistent view of any transaction
that executes concurrently with the archive.

Archiving Using a GROUP READ LOCK

You can archive a table with a group read HUT lock at the same time users are updating it.

Tables archived with the group read HUT lock option do not archive with secondary indexes.
You may rebuild secondary indexes after you restore any table archived with a group read
HUT lock.

Restoring a Group Read Lock Archive

You must define tables that are archived under a group read HUT lock with an after-image
journal in order to restore them. Always follow the restore of an archived data set taken under
a group read HUT lock by performing a rollforward operation, using the after-image journal
that was created during the archive. Rollforward ensures that the data in the tables is
consistent. To learn more about the rollforward operation, see “ROLLFORWARD” on
page 208.

An archive taken under a group read HUT lock does not archive secondary indexes defined for
the tables being archived. Therefore, you must rebuild these indexes after restoring such an
archive. If you restore without specifying the NO BUILD option, Teradata ARC builds
nonunique secondary indexes as part of the restore process. Teradata ARC does not rebuild
unique secondary indexes. To learn more about the NO BUILD option, see “NO BUILD
Option” on page 51.

The Teradata ARC restore process marks as invalid all existing unique secondary indexes for
the table being restored. Rebuild or drop all secondary indexes by doing one of the following:

• Issue a BUILD DATA TABLES statement.

• Drop and recreate the index.

Rebuild unique secondary indexes only after the rollforward of the data tables is complete.

Restoring a GROUP READ LOCK Archive of Selected Partitions

If you use the GROUP READ LOCK option for an archive of selected partitions, use the next
procedure to perform the restore. To use this procedure, the structure version of the tables
being restored must match the structure version of the tables stored on the backup file.

Chapter 2: Archive/Recovery Operations
Using Host Utility Locks

Teradata Archive/Recovery Utility Reference 63

1 Restore or copy the selected partitions to the target table using the NO BUILD option.

2 Restore or copy journal tables of the journal backup associated with the time period of
interest.

3 Roll forward the restored tables using the USE RESTORED JOURNAL and PRIMARY
DATA options.

4 Submit a BUILD DATA TABLES statement to complete the build of the restored tables.

During this procedure, an "out-of-range" error condition can occur if the selected partitions
for the restore are inconsistent with the change rows being rolled forward (that is, the journal
contains rows outside of the selected partitions for the restore). ROLL processing continues on
the indicated table and the out-of-range changes are made to the target table.

Caution: This procedure corrects the structural validity of the table but it does not help you understand
the nature of the updates applied by the ROLL operation that fall outside of your selected
partitions for the restore. It is possible that some significant partitions can be missed in the
restore and only partially updated by the out-of-range changes. Carefully audit the entire
recovery process to ensure that no data is missing. If you suspect that data is missing, repeat
the above procedure for the affected partitions.

Teradata ARC Locks During a Restore Operation

A restore operation uses an exclusive HUT lock when data tables are restored.

• To restore an entire database, Teradata ARC places the exclusive lock at the database level.

• To restore selected tables, Teradata ARC places the exclusive lock on each table before it
starts to restore the table.

• To restore (or copy) selected partitions of PPI tables, Teradata ARC uses a write lock.

• To restore selected partitions of PPI tables with GROUP READ LOCK, the entire table
locks rather than a part of the table.

Restoring Tables

If you specify the RELEASE LOCK keyword in the RESTORE statement and that statement
specifies that selected tables are to be restored, Teradata ARC releases the exclusive HUT lock
on each table as soon as it finishes restoring it.

Restoring a Journal Table

When you restore a journal table, Teradata ARC places a write HUT lock on the table. The
restored journal table and the journal table that is recording changed rows are different
physical tables. Consequently, the write HUT lock exerted by a journal table restore does not
prevent change images from recording to the journal table. The write HUT lock only prevents
concurrent restore operations to the same journal.

Chapter 2: Archive/Recovery Operations
Setting Up Journal Tables

64 Teradata Archive/Recovery Utility Reference

Locks Associated with Other Operations

Teradata also uses the following locks.

Build Operation Exclusive Utility Lock

A build operation places an exclusive utility lock on databases where all tables are being built.
Locks are applied only to the tables that are being built.

Checkpoint Operation Transaction Locks

The CHECKPOINT statement places transaction locks rather than utility (HUT) locks.
Transaction locks are automatically released when the checkpoint operation terminates. A
checkpoint operation places:

• A write lock on the journal table for which checkpoints are being set.

• Read locks on the data tables that may contribute change images to the journal table for
which checkpoints are being set.

The operation places these locks and then writes the checkpoint. After the operation writes
the checkpoint, Teradata ARC releases the locks.

Note: If you execute a checkpoint operation to mark the journal for later archiving using
CHECKPOINT with the SAVE option, the AMP places an access lock on the data tables
instead of a read lock.

Rollback/Rollforward Operations Exclusive and Read Utility Locks

Rollback and rollforward operations place these utility (HUT) locks:

• Exclusive locks on the tables to be recovered.

• A read utility lock on the journal table that is input to the recovery operation.

A journal table with a read utility lock can still log change images. The read utility lock on the
journal table does prevent concurrent Teradata ARC statements, such as DELETE JOURNAL.

Delete Journal Operations Write Lock

The DELETE JOURNAL statement places transaction locks, not utility (HUT) locks. When
the operation finishes, Teradata ARC automatically releases all transaction locks.

The DELETE JOURNAL statement places a write lock on the journal table to be deleted.
Because the DELETE JOURNAL statement deletes only the saved journal, the active portion
of the journal can still log change images during the delete operation. Other archive or
recovery operations are not permitted.

Setting Up Journal Tables

Select the following journal options either at the database level or the table level. Specify single
image or dual image journals.

Chapter 2: Archive/Recovery Operations
Setting Up Journal Tables

Teradata Archive/Recovery Utility Reference 65

These terms are used to describe journaling:

Note: Teradata ARC supports the generation of both before-image and after-image
permanent journals, both of which can be either local or remote.

Location of Change Data

Teradata ARC places change images in whatever journal table you define. The table can be in
the same database as the data tables or it can be in another database.

Each database can contain only one journal table, but any journal table and the data tables that
use it can reside in the same or in different databases. Set up journaling to have a single journal
table for all data tables in the Teradata Database, a separate journal table for each table within
a database, or a combination of these two.

If a data table does not have fallback protection, Teradata ARC always writes its after images to
another AMP (backup AMP) in the same cluster as the one containing the data being
changed.

Table 7 shows where Teradata ARC writes journal change rows based on all the possible
combinations of table protection and the specified journal option.

Table 6: Journal Options

Journal Options Description

After image The image of the row after changes have been made to it.

Before image The image of the row before changes have been made to it.

Dual image Two copies of the journal that are written to two different AMPs.

Primary AMP The AMP on which the primary copy of a row resides.

Fallback AMP The AMP on which the copy of a row resides.

The Teradata Database distributes duplicate data rows to fallback processors
by assigning the hash code of the row to a different AMP in the same cluster.

Backup AMP The AMP on which copies of journal rows for nonfallback tables reside,
including journals with single after-images, one copy of the dual after images,
and one copy of the dual before images.

Backup AMPs differ from fallback AMPs because journal images are not
distributed to backup AMPs through a hashing algorithm. Instead, all images
for one AMP go to a single backup. The backup for each AMP is always in the
same cluster.

For example, if AMPs A, B and C are in the same cluster, A backs up B, B
backs up C and C backs up A.

Chapter 2: Archive/Recovery Operations
Setting Up Journal Tables

66 Teradata Archive/Recovery Utility Reference

If you specify the dual option, Teradata ARC writes an after-image on the primary and backup
AMP. For a fallback table with a single after-image journal, Teradata ARC writes a journal row
to the primary and fallback AMP. Teradata ARC also writes single before-images for
nonfallback tables to the same processor as the data row being changed.

Subtables

Teradata Database maintains journals in tables similar to data tables. Each journal table
consists of active, saved and restored subtables. The active and saved subtables are the current
journal. Teradata ARC appends change images from updates to a data table to the active
subtable. Teradata ARC also writes rows marking a checkpoint on the journal to the active
subtable.

Before you archive a journal table, use the CHECKPOINT statement with the SAVE option.
The checkpoint operation logically terminates the active portion of the journal and appends it
to the current saved portion. Archive this saved portion to the client or delete it from the
Teradata Database.

When you restore an archived journal to the Teradata Database, Teradata ARC places change
images in the restored subtable. For more efficient recovery operations, Teradata ARC always
places the change images on the processor they apply to, instead of placing them on a backup
processor. You can delete a restored journal subtable with the DELETE JOURNAL table
statement.

Roll operations can use either the current journal or the restored journal. When you specify
the current journal, Teradata ARC automatically uses both the active and saved subtables of
the journal table.

Table 7: Journal Change Row Location

Journal Option Fallback Location of Change Data

After Yes Primary and Fallback AMPs

Before Yes Primary and Fallback AMPs

Dual After Yes Primary and Fallback AMPs

Dual Before Yes Primary and Fallback AMPs

After No Backup AMP

Local After No Primary AMP

Before No Primary AMP

Dual After No Primary and Backup AMP

Dual Before No Primary and Backup AMP

Chapter 2: Archive/Recovery Operations
Setting Up Journal Tables

Teradata Archive/Recovery Utility Reference 67

Local Journaling

Teradata ARC allows you to specify whether single after-image journal rows for nonfallback
data tables are written on the same AMP as the changed data rows (called function called local
single after-image journaling) or written to another AMP in the cluster (remote single after-
image journal).

Use the local single after-image journal only with nonfallback tables. It is specified with the
JOURNAL option in these SQL statements:

• CREATE DATABASE

• CREATE USER

• MODIFY DATABASE

• MODIFY USER

• CREATE TABLE

• ALTER TABLE

The system dictionary table/view columns describing journaling types are modified to be able
to describe LOCAL single after-image journaling.

Teradata ARC rules for local single after-image journal and single before-image journal are the
same except that a single local after-image journal is used with ROLLFORWARD only and
single before-image journal is used with ROLLBACK only.

Local single after-image journaling reduces AMP path length. Without file system fault
isolation support, the recoverability of user data tables against certain type of software errors
with local single after-image journaling is less efficient than recovering with remote single
after-image journaling.

Archiving Journal Tables

Example

In this example, journal tables for database PJ are archived to a file with a filename of
ARCHIV1.

LOGON P/PJ,PJ;
CHECKPOINT (PJ) ALL, WITH SAVE;
ARCHIVE JOURNAL TABLES (PJ) ALL,

RELEASE LOCK,
FILE=ARCHIV1;

LOGOFF;

Journal Impact on Recovery

If a logical disk is damaged, data tables with local single after-image journaling might not be
recovered beyond the last archived data. On the other hand, data tables with remote single
after-image journaling might be recovered to the most recent transaction.

While the risks of cylinder corruption are minimal, it is possible for a cylinder containing both
a user table and master journal, or a master index, to become corrupted. If this occurs, local
journaling does not offer as much protection as remote journaling.

Chapter 2: Archive/Recovery Operations
Controlling Journal Checkpoint Operations

68 Teradata Archive/Recovery Utility Reference

Controlling Journal Checkpoint Operations

A checkpoint places a marker at the chronological end of the active journal subtable. When
the checkpoint is taken, the Teradata Database assigns an event number to it and returns that
number as a response to the CHECKPOINT statement. In addition, you can supply a name
with the CHECKPOINT statement and use it to reference the checkpoint in future operations.

During a checkpoint with a save operation, the Teradata Database logically appends the active
subtable of the journal to the end of the saved subtable, then it automatically initiates a new
active subtable.

You can archive or delete only the saved subtable of a journal. An ARCHIVE JOURNAL
TABLE statement copies the saved subtable to the client. Use a DELETE JOURNAL table
statement to physically purge the saved subtable.

Checkpoint Names

Checkpoint names must be unique within a journal subtable to avoid ambiguity. If checkpoint
names are not unique, the Teradata Database uses one or both of the following:

• The last instance of a named checkpoint found in rollback operations

• The first instance of a named checkpoint found in rollforward operations.

Qualify a named checkpoint by the event number assigned to it by the Teradata Database.

Submitting a CHECKPOINT Statement

You can submit the CHECKPOINT statement both as a Teradata ARC statement and as a
Teradata SQL statement (such as, through BTEQ or a user program). If you specify an SQL
CHECKPOINT statement, the active journal is not saved.

When you enter a CHECKPOINT statement with the SAVE option, the Teradata Database
creates the saved subtable. You can only enter this option through the Teradata ARC form of
the CHECKPOINT statement.

Checkpoint and Locks

The checkpoint with a save operation can be taken with either a read lock or an access lock. If
you use a read lock, the Teradata Database suspends update activity for all data tables that
might write change images to the journal table for which checkpoints are being set. This
action provides a clean point on the journal.

When you perform a save operation using an access lock, the Teradata Database takes all
transactions that have written change images to the journal (which have not been committed)
and treats them as though they started after the checkpoint was written.

Because you do not know how the Teradata Database treats particular transactions, a
checkpoint with a save operation under an access lock is useful only for coordinating
rollforward activities first from the restored journal and then from the current journal.

Chapter 2: Archive/Recovery Operations
Controlling Journal Checkpoint Operations

Teradata Archive/Recovery Utility Reference 69

Completing a Checkpoint With Offline AMPs

You can issue a checkpoint statement while AMPs are offline. If AMPs are offline when you
issue a checkpoint, Teradata ARC automatically generates a system log entry that takes the
checkpoint on the offline AMPs as soon as they return to online status. The system startup
process generates the checkpoint and requires no action by you.

In addition to generating the checkpoint entry in the journal, system recovery also updates the
journal table with change images that were generated while the AMP was offline. These
change images are either for fallback tables or dual image journals that should be on the AMP
that was offline when the system took the checkpoint.

Chapter 2: Archive/Recovery Operations
Controlling Journal Checkpoint Operations

70 Teradata Archive/Recovery Utility Reference

Teradata Archive/Recovery Utility Reference 71

CHAPTER 3

Environment Variables

This chapter describes the variables used in Teradata ARC.

Table 8 summarizes Teradata ARC environment variables. For more detail, refer to the
sections that follow the table.

Table 8: Environment Variables

Variable Description

ARCDFLT The environment variable that points to the file containing the system-
wide default parameters values, publicly accessible on the network.

ARCENV The environment variable in which any valid Teradata ARC runtime
parameters may be specified.

ARCENVX Same as ARCENV, except that ARCENVX has the highest override
priority. See ARCENV and ARCENVX in this chapter. Any runtime
parameter set in ARCENVX is guaranteed to be used.

Chapter 3: Environment Variables
ARCDFLT

72 Teradata Archive/Recovery Utility Reference

ARCDFLT

Purpose
ARCDFLLT is the environment variable that points to the file that contains the default
runtime parameters.

Usage Notes

Here is an example using ARCDFLT:

SET ARCDFLT=C:\TESTARC\CONFIG.ARC

The example above is equivalent to:

ARCMAIN DEFAULT=C:\TESTARC\CONFIG.ARC

Almost all runtime parameters can be set as defaults in the file that is pointed to by ARCDFLT,
so you can avoid long command-line arguments. ARCMAIN loads the contents of the file
pointed to by ARCDFLT when ARCMAIN builds runtime parameters using these rules:

• If the path of a DEFAULT parameter file includes embedded spaces or special characters,
enclose the path with single (’) or double (") quote marks.

• Permanently set ARCDFLT using Start > Control Panel > System > Environment. But if a
parameter is specified multiple times in different places, the override priority is:

a Parameters set in ARCENVX

b Actual runtime parameters on the command line

c Parameters set in ARCENV

d Parameters set in the default file pointed to by ARCDFLT

Chapter 3: Environment Variables
ARCENV and ARCENVX

Teradata Archive/Recovery Utility Reference 73

ARCENV and ARCENVX

Purpose
ARCENV and ARCENVX are environment variables in which any valid Teradata ARC
runtime parameters can be specified.

Usage Notes

Here is an example using ARCENV and ARCENVX:

SET ARCENV=WDIR=C:\TEMP\ARC\
SET ARCENVX=SESSIONS=20

Almost all runtime parameters can be set as defaults in ARCENV or ARCDFLT or in some
combination of both. ARCMAIN internally loads the contents of ARCENV, or the contents of
the default file to which ARCDFLT points, when ARCMAIN builds runtime parameters using
these rules:

• If a parameter is specified multiple times in difference places, the override priority is:

a Parameters set in ARCENVX

b Actual runtime parameters on the command line

c Parameters set in ARCENV

d Parameters set in the default file pointed to by ARCDFLT

• You can specify runtime parameters in any order as long as PARM / DEFAULT is specified
first.

• Commas or white spaces can be used as delimiters to separate ARCMAIN runtime
parameter syntax elements. If any of the runtime parameters require commas or white
spaces in their values, the values must be delimited by double or single quotes:

WORKDIR='\my workdir'
IOPARM='device=tape1 tapeid=100001 volset=weeklybackup'

Chapter 3: Environment Variables
ARCENV and ARCENVX

74 Teradata Archive/Recovery Utility Reference

Teradata Archive/Recovery Utility Reference 75

CHAPTER 4

Runtime Parameters

You can specify Teradata ARC runtime parameters in any order as long as you specify PARM/
DEFAULT first.

• For MVS systems, specify runtime parameters in ARCPARM or PARM on the EXEC card
of the JCL.

• For VM systems, specify runtime parameters following ARCMAIN in the EXEC file.

Table 9 summarizes Teradata ARC runtime parameters. For more detail, refer to the sections
that follow the table.

Table 9: Runtime Parameters

Parameter
Platforms
Supported Description

CATALOG All Platforms Enables direct tape positioning for restore and copy
operations.

CHARSETNAME All Platforms Enables support of Chinese/Korean character sets
when connecting to the database.

CHECKPOINT All Platforms Places restart information in the restart log each time
the specified number of data blocks are processed.

CHECKSUM All Platforms Allows the Teradata Database and Teradata ARC to
verify data packets during ARCHIVE or RESTORE.

DATAENCRYPTION All Platforms Instructs Teradata ARC to use the payload
encryption feature that is supported by Teradata
Call-Level Interface (CLI).

DBSERROR All Platforms Allows the user to override the severity of specified
error code. The new severity will determine how
ARC handles the error.

DEFAULT All Platforms Defines the file path name that contains default
options for Teradata ARC.

DEMODULE Windows 2000/
XP/Server 2003

Specifies a data extension module, which processes
archive data prior to being sent to, or after being
retrieved from, output media.

DEPARM Windows 2000/
XP/Server 2003

Specifies the parameters that are used with a data
extension module (see DEMODULE).

Chapter 4: Runtime Parameters

76 Teradata Archive/Recovery Utility Reference

ERRLOG

(Specify the prefix NO to
disable if previously
enabled, even in the PARM
file.)

All Platforms Creates a file to store Teradata ARC execution errors.

FATAL All Platforms Allows you to set the program to reclassify a
normally nonfatal error condition as fatal, and abend
if the selected message is issued.

FILEDEF All Platforms Maps the internal name of a file to an external name,
if specified.

HALT

(Specify the prefix NO to
disable if previously
enabled, even in the PARM
file.)

All Platforms Terminates the current task if, during archive or
recovery, the Teradata Database fails or restarts, and
the new configuration differs from the configuration
that preceded the failure.

HEX

(Specify the prefix NO to
disable if previously
enabled, even in the PARM
file.)

All Platforms Displays object names in the standard output in
hexadecimal notation.

IOMODULE Linux,
MP-RAS,
Windows 2000/
XP/Server 2003

Specifies the name of an access module.

Note: The value of IOMODULE is passed directly to
the tape access module. ARCMAIN does not
interpret the value.

IOPARM Linux,
MP-RAS,
Windows 2000/
XP/Server 2003

Specifies the initialization string for the access
module named in IOMODULE.

Note: The value of IOPARM is passed directly to the
access module. ARCMAIN does not interpret the
value.

LOGON All Platforms Enables the runtime definition of the logon string.

LOGSKIPPED All Platforms Instructs Teradata ARC to log all of the tables that are
skipped during an ARCHIVE operation.

OUTLOG MP-RAS,
Windows 2000/
XP/Server 2003

Duplicates standard (stdout) output to a file.

PARM IBM MVS, VM Specifies the frequently used runtime parameters are
in a parameter file.

Important: This parameter must be first when other
parameters are specified.

Table 9: Runtime Parameters (continued)

Parameter
Platforms
Supported Description

Chapter 4: Runtime Parameters

Teradata Archive/Recovery Utility Reference 77

PAUSE

(Specify the prefix NO to
disable if previously
enabled, even in the PARM
file.)

All Platforms Pauses execution if, during archive or recovery, the
Teradata Database fails or restarts, and the new
configuration differs from the configuration that
preceded the failure.

PERFFILE All Platforms Provides a performance logging option for Teradata
ARC to export performance data for job analysis.

RESTART

(Specify the prefix NO to
disable if previously
enabled, even in the PARM
file.)

All Platforms Specifies the current operation is a restart of a
previous operation that was interrupted by a client
failure.

RESTARTLOG All Platforms Specifies the restart log name for ARCMAIN.

SESSIONS All Platforms Specifies the number of Teradata sessions available
for archive and recovery operations.

STARTAMP All Platforms Specifies a starting AMP for an all-AMPs archive
rather than starting on a random AMP or starting
with AMP0.

UEN (Utility Event
Number)

MP-RAS,
Windows 2000/
XP/Server 2003

Specifies the value that will be used to define
%UEN% when in a RESTORE/COPY operation.

VERBOSE

(Specify the prefix NO to
disable if previously
enabled, even in the PARM
file.)

All Platforms Sends Teradata ARC progress status information to
the standard output device (for example, SYSPRINT
for IBM platforms).

WORKDIR MP-RAS,
Windows 2000/
XP/Server 2003

Specifies the name of the working directory.

Table 9: Runtime Parameters (continued)

Parameter
Platforms
Supported Description

Chapter 4: Runtime Parameters
CATALOG

78 Teradata Archive/Recovery Utility Reference

CATALOG

Purpose
CATALOG provides direct tape positioning for restore and copy operations when a table or a
database is archived with the CATALOG runtime parameter enabled.

Syntax

where

2412a002

CATALOG

NO CTLG ALLTABLES

ALL

OBJONLY

OBJ

FILE

FILENAME

OLDCATALOG

OLDCTLG

Syntax Element Definition

CATALOG or CTLG Enables CATALOG at the table level for ARCHIVE, RESTORE/COPY and/or
ANALYZE statements.

CATALOGALLTABLES or CTLGALL Synonyms for CATALOG.

CATALOGOBJONLY or CTLGOBJ Enables CATALOG at the object level for ARCHIVE, RESTORE/COPY and/or
ANALYZE statements.

CATALOGFILE or CTLGFILE Enables CATALOG to write all catalog information to a file on the client machine.

The default file name for the catalog is 'CATALOG' on mainframe systems, and
'CATALOG_<uen>.CTG' on other systems, where <uen> is the Utility Event
Number for the archive job.

OLDCATALOG or OLDCTLG When specified, along with CATALOG, enables use of the multi-table
implementation of CATALOG, instead of the single-table method which does not
create a new table for each ARCHIVE.

NOCATALOG or NOCTLG Enables CATALOG for ARCHIVE, RESTORE/COPY and/or ANALYZE
statements.

CATALOGFILENAME or CTLGFILE Enables changing the file name for the catalog.

NOCATALOGFILE or NOCTLGFILE Disables CATALOGFILE so that catalog information is not created during
ARCHIVE, and not used during RESTORE or COPY.

Chapter 4: Runtime Parameters
CATALOG

Teradata Archive/Recovery Utility Reference 79

The following syntax is not supported:

• CATALOGALL

• CTLGALLTABLES

• CATALOGOBJ

• CTLGOBJONLY

Usage Notes

CATALOG has two levels of granularity: OBJECT and ALL tables. If you specify CATALOG at
the object level, the repositioning information is inserted into the CATALOG table for the
database header record only.

Change the database in which the CATALOG table is created by adding this runtime
parameter:

CATALOGDB=dbname

If you do not specify CATALOGDB, Teradata ARC uses $ARC as the default CATALOG
database.

Because catalog information is saved in the database, CATALOG enabled has a slight impact
on performance. However, it is recommended that when archiving a database that contains
many small or empty tables, disable CATALOG or, alternately, enable CATALOG at the object
level.

Teradata ARC automatically excludes an active CATALOG database from its object list to
avoid HUT lock conflicts. To archive, restore, or copy a CATALOG database, use
NOCATALOG.

Automatic Activation of CATALOG

Teradata ARC automatically checks for the following macro before starting an archive
operations if CATALOG is specified as a runtime parameter:

$ARC.ACTIVATE_CATALOG

If CATALOG is desired for all archive operations, create the following macro:

CREATE MACRO $ARC.ACTIVATE_CATALOG as (;);

Automatic activation of CATALOG only works for archive operations. Explicitly specify
CATALOG for restore/copy operations.

The CATALOG Table

The default CATALOG database is $ARC (or $NETVAULT_CATALOG when using NetVault).
It must be created and appropriate access rights must be granted before the first use of the
CATALOG runtime parameter.

Catalog information for all archive jobs is kept in the one CATALOG table. To continue using
the previous multi-table implementation of CATALOG, specify the OLDCATALOG
parameter in addition to the CATALOG parameter. Also, you can still use old catalog tables

Chapter 4: Runtime Parameters
CATALOG

80 Teradata Archive/Recovery Utility Reference

during RESTORE or COPY, even if you have not specified OLDCATALOG. ARCMAIN
searches for a table with the old naming style, and uses it if one exists.

Example

For UEN 1234, the following table is automatically created at the beginning of an archive
operation:

$ARC.CATALOG_1234

If an error occurs when creating the CATALOG table, Teradata ARC terminates with a fatal
error. Correct the error and resubmit the archive job.

During an archive operation, a CATALOG table row is inserted at the following instances:

• For each object, a database level CATALOG row is inserted at the end of the dictionary
phase.

• For each table in the database, if the object level has not been specified, a table level
CATALOG row is inserted at the end of the data phase.

The CATALOG tables can be used for detailed archive history in conjunction with the
database DBC.RCEvent table. For information on the database DBC.RCEvent table, see the
Data Dictionary.

Changing the Primary Index in the CATALOG Table

In previous versions of Teradata ARC, CATALOG tables were created with inefficient primary
indexes that sometimes caused rows to be skewed on a limited number of AMPS. To correct
this, follow these steps to change the primary index of an existing catalog table.

Note: If a new catalog table is created by Teradata ARC, these steps are not necessary.

• Create a new catalog table with the same DDL as the existing table:

CREATE TABLE CATALOGNEW AS CATALOG WITH NO DATA;

• Modify the new catalog table to use the correct primary index:

ALTER TABLE CATALOGNEW
MODIFY PRIMARY INDEX(EVENTNUM, DATABASENAME, TABLENAME);

• Copy all data from the existing catalog data to the new catalog table:

INSERT INTO CATALOGNEW SELECT * FROM CATALOG;

• Remove the existing catalog table:

DROP TABLE CATALOG;

• Rename the new catalog table to “CATALOG”:

RENAME TABLE CATALOGNEW AS CATALOG;

CATALOG Operations

Archive

CATALOG no longer creates a table for each ARCHIVE statement; instead, CATALOG uses a
single table named CATALOG. Multiple catalog tables are only created if you specify the
OLDCATALOG parameter.

Chapter 4: Runtime Parameters
CATALOG

Teradata Archive/Recovery Utility Reference 81

Restore

Use CATALOG in a restore operation only to selectively restore one or some databases or
tables. To restore the majority of a tape or an entire tape, do not use CATALOG.

Because the UEN is saved in an archive header, ARCMAIN knows which CATALOG table in
the CATALOG database to access to retrieve catalog information for a restore operation.
When ARCMAIN is about to search for the database header, it retrieves the CATALOG row for
the database and uses its repositioning information for direct tape repositioning.

These operations occur if CATALOG was enabled for the archive operation:

• If CATALOG was enabled at the table level, ARCMAIN queries the CATALOG table for
that specific table and uses the repositioning information for the table header search.

• If CATALOG was enabled at the object level at the time of the archive operation, then only
database level repositioning is done using the catalog information; the tapes are scanned
thereafter.

Copy

Use CATALOG in a copy operation only to selectively copy one or some databases or tables. If
most or all of a tape is being copied, do not use CATALOG.

Copy operations to the same system from which data was archived work similarly to restore
operations with respect to the use of catalog information. But to use CATALOG in a copy
operation to a different system, you need to know the UEN of the tape. Obtain the UEN by
using an ANALYZE statement or by reading the output from an ARCHIVE statement. With
the UEN, you can archive and copy the corresponding CATALOG table from the source
system to the target system before running a copy operation.

Mirrored Files

When two different data sets are archived by specifying File twice in an ARCHIVE statement,
repositioning information is only saved in the CATALOG table for the primary, not the second
(called the mirrored) data set.

If the mirrored data set is used in a restore operation with CATALOG, Teradata ARC detects
that the mirrored data set is being used and automatically disables CATALOG.

Analyze

A CATALOG table can be generated offline using an ANALYZE statement that contains the
CATALOG keyword, however, the ANALYZE statement does not recognize CATALOG
specified as a runtime parameter. Tapes are scanned and the CATALOG rows are inserted into
the CATALOG table for the database header records and the table header records in the tape
set. After the CATALOG table is generated, it can be used in restore/copy operations.

Specifying CATALOG as a keyword in an ANALYZE statement is useful when a subset of
objects must be restored or copied from a recataloged table set multiple times. However, for
one-time operations, it is recommended that a RESTORE or COPY statement be used
without specifying CATALOG as a runtime parameter because catalog generation using an
ANALYZE statement requires scanning the entire tape set anyway.

Chapter 4: Runtime Parameters
CATALOG

82 Teradata Archive/Recovery Utility Reference

CATALOGFILE

When you use the CATALOGFILE parameter, you can change the file name for the catalog
with the CATALOGFILENAME command-line option. You can also disable CATALOGFILE
by specifying NOCATALOGFILE or NOCTLGFILE. The effect is the same as NOCATALOG.
Catalog information is not created during ARCHIVE, and is not used during RESTORE or
COPY.

When using the CATALOG option of ANALYZE along with the CATALOGFILE /
CATALOGFILENAME parameters, ANALYZE writes to both the CATALOG table on the
database and the specified client-side file.

Note: In mainframe platforms (for example, MVS, VM), limit file names to eight characters.

NOCATALOG

NOCATALOG disables CATALOG. No CATALOG table is created during an archive
operation; no catalog information is used during a restore/copy operation.

Dictionary Archive

The internal processing of a dictionary archive is equivalent to archiving a database with
empty tables. Because there is no performance benefit for either archive or restore/copy
operations for a dictionary archive, Teradata ARC automatically lowers the granularity of
cataloging to the object level for dictionary archives. If you need table-level details for content/
history purposes, generate them by running an ANALYZE of the archive file while using the
CATALOG keyword.

Chapter 4: Runtime Parameters
CHARSETNAME

Teradata Archive/Recovery Utility Reference 83

CHARSETNAME

Purpose
The CHARSETNAME parameter adds support for the BIG5, GB, UTF-8, and Korean
character sets to Teradata ARC. Use the CHARSETNAME parameter when you invoke the
ARCMAIN program at startup.

Syntax

where

Usage Notes

It is possible to use Teradata ARC with a database that uses an alternate character set. Alternate
character sets available for use with Teradata ARC include kanji ideographs, katakana, Korean,
and traditional and simplified Chinese.

Use either CSNAME or CS as shorthand for CHARSETNAME.

When you specify the character set parameter, Teradata ARC uses the specified character set
when connecting to the database. If you do not specify the option, Teradata ARC uses one of
these default character sets for your client system:

• EBCDIC for channel-attached

• ASCII for network-attached

Available Character Sets

Use any of the following character sets to define the name parameter. Refer to SQL Reference:
Fundamentals for information on defining your own character set.

Syntax Element Definition

name Name of the selected character set

2412a008

CHARSETNAME =name

Chapter 4: Runtime Parameters
CHARSETNAME

84 Teradata Archive/Recovery Utility Reference

For compatibility with previous Teradata ARC versions, you can still individually specify the
following character sets on the command line without using the CHARSETNAME parameter.

It is not necessary to modify Teradata ARC jobs that used kanji character sets available in
previous Teradata ARC versions.

Establishing a Character Set

You can establish a character set for a particular archive/recovery operation. However, once
the character set is established, you cannot change it while Teradata ARC is executing an
operation. When a character set is established, that character set accepts only Teradata ARC
statements input in that character set.

Table 10: Teradata-Defined Character Sets

On this operating system… Use this character set name… For…

Channel-attached EBCIDIC default

KATAKANAEBCDIC katakana

KANJIEBCDIC5026 kanji 5026

KANJIEBCDIC5035 kanji 5035

TCHEBCDIC937_3IB traditional Chinese

SCHEBCDIC935_2IJ simplified Chinese

HANGULEBCDIC933_1II Korean

Network-attached ASCII default

UTF8 general

KANJIEUC_0U kanji EUC

KANJISJIS_0S kanji shift-JIS

TCHBIG5_1R0 traditional Chinese

SCHGB2312_1T0 simplified Chinese

HANGULKSC5601_2R4 Korean

Channel-Attached Client Systems Network-Attached Client Systems

EBCDIC ASCII

KATAKANAEBCDIC KANJIEUC_0U

KANJIEBCDIC5026_0I KANJISJIS_0S

KANJIEBCDIC5035_0I

Chapter 4: Runtime Parameters
CHARSETNAME

Teradata Archive/Recovery Utility Reference 85

Establish a character set in one of the following ways:

• At startup, invoke a parameter in JCL from MVS or in your VM EXEC. This user-specified
character set overrides all other character sets previously specified or placed in default.

• Specify a character set value in the HSHSPB parameter module for IBM mainframes. This
takes second precedence.

• If a character set is not user-specified or specified in HSHSPB, the default is the value in
the system table, database DBC.Hosts.

If you rely on the database DBC.Hosts table for the default character set name, ensure that the
initial logon from the channel-attached side is in EBCDIC. Otherwise, Teradata ARC does not
know the default character set before logon.

Examples

On MVS, this JCL invokes ARCMAIN:

//ARCCPY EXEC PGM=ARCMAIN,PARM=’SESSIONS=8 CHARSETNAME=KATAKANAEBCDIC’

On VM/CMS, this EXEC invokes ARCMAIN:

ARCMAIN <SAMPLE.SYSIN.A SESSIONS=8 CHARSETNAME=KATAKANAEBCDIC

Character Set Limitations

Using an alternate character set allows naming tables and databases using an extended set of
characters. However, the internal representation of these extended characters depends on the
session character set.

Although you can use Teradata ARC with a Teradata Database that uses an alternate character
set, special care must be taken when archive and restore operations are used on a Teradata
Database with an alternate character set:

• When archiving objects with names that use non-Latin characters, use the same character
set defined using the multinational collation option for the database.

Multinational collation provides more culturally aware ordering of data in the database. If
you use a different character set, Teradata ARC may have difficulty restoring the archive.
To learn more about multinational collation, refer to SQL Reference: Fundamentals.

• To restore an archive made with an alternate character set, use the same character set used
in the archive.

• You cannot restore an archive on a system that cannot handle the character sets used to
create the archive.

• When the KATAKANAEBCDIC character set is passed to Teradata ARC, all messages are
uppercase because that character set does not support lowercase Latin letters.

When a Teradata ARC run begins while using an alternate character set, the software displays
the following message, where character_set_name is the name of the character set defined in
the runtime parameter:

CHARACTER SET IN USE: character_set_name

Note: Contact your system administrator or Teradata field support representative to learn
more about the alternate character sets supported at your Teradata Database installation.

Chapter 4: Runtime Parameters
CHARSETNAME

86 Teradata Archive/Recovery Utility Reference

Limitations for Japanese Character Sets and Object Names

For certain character sets (including multibyte characters), Teradata ARC accepts non-Latin
characters as part of an object name. An object name can be a database name, table name, user
name, password, or checkpoint name in a Teradata ARC statement.

Teradata ARC also supports input and display of object names in hexadecimal notation.
Teradata Database can store and display objects in hexadecimal format to allow object names
to be archived and restored from one platform to another. To learn more about using non-
Latin characters in object names, refer to SQL Reference: Fundamentals.

For example, to archive a database created on a UNIX platform from an IBM mainframe, you
cannot specify the UNIX EUC character set on the IBM mainframe. Instead, specify the
database name in the internal hexadecimal format understood by the Teradata Database.

The Teradata ARC allows you to specify object names in any of these formats:

• Without quotes. For example, for database DBC:

DBC

• With quotes. For example, for database DBC:

“DBC”

• External hexadecimal:

X’<object name in external hexadecimal format>’

This indicates that the specified hexadecimal string represents a name in the client
(external) format.For example, for database DBC:

X’C4C2C3’

• Internal hexadecimal

’<object name in internal hexadecimal format>’XN

This indicates that the specified hexadecimal string represents a name in the Teradata
Database internal format.For example, for database DBC:

’444243’XN

A Teradata ARC statement can contain any combination of object name notations. For
example, the hexadecimal notation is a valid object name:

’4142’XN.TABLEONE

Limitations for Chinese and Korean Character Sets and Object
Names

When using Chinese and Korean character sets on channel- and network-attached platforms,
object names are limited to:

• A-Z, a-z

• 0-9

• Special characters such as $ and _

Chapter 4: Runtime Parameters
CHARSETNAME

Teradata Archive/Recovery Utility Reference 87

Note: For more information on Chinese and Korean character set restrictions, refer to SQL
Reference: Fundamentals.

Troubleshooting Character Set Use

It is recommended that you archive objects in the same character set class as the character set
class from which they originated. It might not be possible to restore an object to a database
that does not support alternate character sets. The name of a new table and a table that is part
of the archive created using an alternate character set will not appear to be the same, and
Teradata ARC considers the table as dropped during its restore of the archive.

If the Teradata Database fails to restore or copy a table or database that is archived, specify the
following to perform a restore or copy operation:

• XN form for this object

• Session character set as the same character set as the one used to archive the object

If it is not possible to use the same character set for a restore operation as was used for the
archive, specify the XN form of the object name for the particular table. The XN form will not
be the normal internal form that was stored in the dictionary. Instead, it is the hexadecimal
form of the object name stored in the archive. For example, to specify the XN name of an
object in the COPY/RESTORE command:

COPY DATA TABLES
(mkw.'8ABF8E9A6575635F3235355F636F6C5F746162'xn)
(from ('616263'xn.'8ABF8E9A6575635F3235355F636F6C5F746162'xn)),

release lock,
FILE = ARCHIV1;

Teradata ARC might still not be able to locate the object on the archive because of collation
differences between character sets and single-byte uppercasing applied to the object. Teradata
ARC might fail to locate a object that was part of an archive when copying the table using
ASCII or EBCDIC character sets because single-byte uppercasing was applied to the object.

If Teradata ARC cannot locate the object on the archive via the XN format, copy the object to
a system that uses the character set of the archive, then archive it again. If the object name has
non-Latin characters, rename the object to a valid Latin character name before archiving.

Sample JCL

The following sample line of code from the JCL illustrates how the name of a session character
set is passed via the PARM runtime parameter to ARCMAIN. In the example, the character set
is "KANJIEBCDIC5035_0I":

//COPY EXEC PGM=ARCMAIN, PARM='KANJIEBCDIC5035_0I'

Chapter 4: Runtime Parameters
CHECKPOINT

88 Teradata Archive/Recovery Utility Reference

CHECKPOINT

Purpose
The CHECKPOINT parameter saves restart information in the restart log at the intervals
specified by this parameter.

Syntax

where

Usage Notes

Both archive and restore/copy operations take checkpoints in the data phase. Every time the
specified number of data blocks are processed, Teradata ARC saves the tape positioning and
other processing information in the restart log. The frequency of checkpoint operations is
controlled by the number of data blocks processed.

Because checkpoint operations causes I/Os and additional processing overhead, too many
checkpoints might adversely impact performance. Each Teradata ARC data block contains up
to 32K.

The CHECKPOINT parameter also controls the frequency of VERBOSE display, if active. To
see the amount of data processed every minute with an approximate archive rate of 1MB/
second, set the CHECKPOINT value between 2500 and 4500.

• Setting a checkpoint frequency too high (a low CHECKPOINT value) might impact
performance.

• Setting a checkpoint frequency too low (a high CHECKPOINT value) causes Teradata
ARC to reprocess a large number of data blocks in case of a restart.

Syntax Element Definition

n Number of data blocks processed before the checkpoint is taken.

The maximum number of blocks is 10000000. Suffix K replaces three zeros
(000). Setting CHECKPOINT to 0 disables ARC’s GetPos request.

If CHECKPOINT is not specified, the default number of blocks is 10000 for
IBM and 32000 for Windows.

GR01A020

CHECKPOINT = n
CHKPT

Chapter 4: Runtime Parameters
CHECKPOINT

Teradata Archive/Recovery Utility Reference 89

Setting CHECKPOINT to 0

If CHECKPOINT is set to 0:

• Teradata ARC does not save positioning into the restart log. This means there is no restart/
reconnect support. Some RESTORE/COPY operations also die with an error because no
positioning information is saved.

• CATALOG is not supported and automatically disabled. Restart processing terminates
with a fatal error.

For some tape drives, tape positioning information is not available or is very expensive.
Setting CHECKPOINT to 0 allows more efficient processing in these cases.

Note: Setting CHECKPOINT to 0 is not the same as setting CHECKPOINT to a very large
number. If CHECKPOINT is set to a very large number, Teradata ARC still saves some
checkpoint information in the restart log, such as the beginning of database/table, and restart/
reconnect is supported at database/table boundaries.

Chapter 4: Runtime Parameters
CHECKSUM

90 Teradata Archive/Recovery Utility Reference

CHECKSUM

Purpose
The CHECKSUM parameter allows the Teradata Database and/or Teradata ARC to verify data
packets during ARCHIVE or RESTORE.

Syntax

where

Usage Notes

Expect the following effects, depending on the value you set for CHECKSUM:

• Setting CHECKSUM=1 helps ensure data integrity during RESTORE, but this might cause
a slight performance drop due to the fact that the checksum value for the data blocks is
calculated only by the Teradata Database.

• Setting CHECKSUM=2 provides verification of data integrity during both ARCHIVE and
RESTORE, but because both the Teradata Database and Teradata ARC calculate the
checksum, this can result in a significant performance drop.

Syntax Element Definition

n Checksum value, which can be one of the following:

• 0 = checksum option is disabled.

• 1 = the checksum is calculated by the Teradata Database.

• 2 = the checksum is verified by Teradata ARC during ARCHIVE, and
by both Teradata ARC and Teradata Database during RESTORE.

Note: CHECKSUM can also be used with the ANALYZE statement. If
the VALIDATE option is used with ANALYZE, Teradata ARC validates
the checksum for each data block in the archive.

2412a005

CHECKSUM =n

Chapter 4: Runtime Parameters
DATAENCRYPTION

Teradata Archive/Recovery Utility Reference 91

DATAENCRYPTION

Purpose
The DATAENCRYPTION parameter instructs Teradata ARC to use the payload encryption
feature (for security) that is supported by Teradata Call-Level Interface (CLI).

Syntax

Usage Notes

This parameter encrypts all Teradata ARC data that is sent across a network, but it does not
encrypt data written to tape.

Caution: Because encryption and decryption require additional CPU resources, using this parameter
significantly affects the backup and restoration of data being sent to and received by Teradata
ARC.

For additional information about statements related to this parameter, see “LOGDATA” on
page 176 and “LOGMECH” on page 181.

For more information about the encryption feature, see Teradata Call-Level Interface Version 2
Reference for Network-Attached Systems.

2412A024

DATAENCRYPTION

Chapter 4: Runtime Parameters
DBSERROR

92 Teradata Archive/Recovery Utility Reference

DBSERROR

Purpose
The DBSERROR parameter allows the specification of a Teradata Database error code,
followed by the severity level of the error.

Syntax

where

Usage Notes

Currently, Teradata ARC allows only Teradata Database error code 2843 when using the
DBSERROR parameter. Specify the severity level for the 2843 error code.

Example

ARCMAIN DBSERROR=(2843,4)

In this example, error code 2843 is set to a warning.

Syntax Element Definition

severity Error severity level.

Teradata ARC accepts any integer for the severity level on DBSERROR. For
consistency, it is preferable to specify the values that Teradata ARC uses:

4 = warning

8 = non-fatal error

12 = fatal error

16 = internal error

2412A034

(2843, severity)DBSERROR =

Chapter 4: Runtime Parameters
DEFAULT

Teradata Archive/Recovery Utility Reference 93

DEFAULT

Purpose
The DEFAULT parameter defines the file path name that contains default options for Teradata
ARC.

Syntax

where

Usage Notes

• If DEFAULT is used, it must be the first runtime parameter specified in the list of
parameters on the command line or in the environment variables.

• If the file path of the DEFAULT parameter includes embedded spaces or special characters,
enclose the path with single (’) or double (") quote marks.

• If ARCDFLT is specified, or if DEFAULT= starts either ARCENV or the actual command-
line argument, then the file pointed to by ARCDFLT or DEFAULT is read into memory
and its content prepended to the command-line string.

• On IBM platforms, PARM is the runtime parameter that provides the analogous
functionality to DEFAULT.

The following example illustrates the use of DEFAULT:

DEFAULT=C:\TESTARC\CONFIG.ARC

Default Configuration File

If you use certain runtime parameters every time Teradata ARC is invoked, save them in a
default configuration file pointed to by the DEFAULT runtime parameter. Each line in the
default configuration file can contain one or more parameters. Add comments after two
semicolons. If two semicolons are encountered in a line, the remaining characters of the line
are ignored.

Syntax Element Definition

filename Name of the file that contains Teradata ARC default options

KM01A008

DEFAULT filename=

Chapter 4: Runtime Parameters
DEFAULT

94 Teradata Archive/Recovery Utility Reference

For example, the following default configuration file called C:\TESTARC\CONFIG.ARC
includes a comment in the file and characters that are ignored:

CATALOG;;enables direct positioning
VERBOSE
;;IOPARM= 'device=tape1 tapeid=1-5 volset=980731backup autoload=120'
FILEDEF=(archive,ARCHIVE_%UEN%.DAT)
CHKPT=1000

Chapter 4: Runtime Parameters
DEMODULE

Teradata Archive/Recovery Utility Reference 95

DEMODULE

Purpose
The DEMODULE parameter specifies the data extension module that processes data prior to
being sent to, or after being retrieved from, output media.

Syntax

where

Usage Notes

Note: This parameter is valid only on Windows platforms.

Data extension modules affect the processing of one or more ARC statements and must be
specified before the ARC statement so that the data extension module will be active by the
time processing of the ARC statement begins. The data extension module determines which
ARC statements will be affected.

DEMODULE and DEPARM parameters are both required because they specify which data
extension module is used, and the parameters that are applied to that data extension. After a
data extension is enabled, it remains active until the end of the data operation (for example, an
archive, restore, copy, or analyze operation).

Currently, the encryption data extension is supported. The data encryption module is used
during an archive operation to encrypt the data read from the Teradata Database before the
data is stored in the archive file. The encryption data extension is currently provided by

Syntax Element Definition

modulename File name of the extension module to load.

The file extension for the file name is optional. If the extension is not
specified, the correct shared library extension for the platform is added
(for example, .dll for Windows).

Note: The DEPARM parameter is also required if DEMODULE is
specified.

2412A029DEMODULE = modulename

Chapter 4: Runtime Parameters
DEMODULE

96 Teradata Archive/Recovery Utility Reference

Protegrity. The Protegrity data encryption module, pepbar.plm, supports the AES128,
AES256, and PANAMA data encryption algorithms.

When data in an encrypted archive file is restored, copied, or analyzed, the data encryption
module and algorithm that was used to originally encrypt the data is automatically loaded by
ARC to decrypt the data after it is read from the archive file. The data can then be processed as
unencrypted data.

In the next example, the Protegrity data encryption module and the AES 128-bit algorithm are
enabled. The single quotes enclosing the DEPARM value are optional. (In addition, the
example also specifies eight Teradata Database sessions, direct tape positioning, and duplicate
output to a file called ARCALL.OUT.)

ARCMAIN SESSIONS=8 CATALOG OUTLOG=ARCALL.OUT DEMODULE=PEPBAR.PLM
DEPARM='ALGORITHM=AES128'

Chapter 4: Runtime Parameters
DEPARM

Teradata Archive/Recovery Utility Reference 97

DEPARM

Purpose
The DEPARM parameter specifies the parameters of the data extension module. See
DEMODULE.

Syntax

where

Usage Notes

Note: This parameter is valid only on Windows platforms.

DEPARM and DEMODULE parameters are both required because they specify which data
extension module is used, and the parameters that are applied to that data extension module.
After a data extension module is enabled, it remains active until the end of the data operation
(for example, an archive, restore, copy, or analyze operation).

Currently, the encryption data extension is supported. The data encryption module is used
during an archive operation to encrypt the data read from the Teradata Database before the
data is stored in the archive file. The encryption data extension is currently provided by
Protegrity. The Protegrity data encryption module, pepbar.plm, supports the AES128,
AES256, and PANAMA data encryption algorithms.

When data in an encrypted archive file is restored, copied, or analyzed, the data encryption
module and algorithm that was used to originally encrypt the data is automatically loaded by
ARC to decrypt the data after it is read from the archive file. The data can then be processed as
unencrypted data.

Syntax Element Definition

parameters Parameters that are required for the module. Single quotes enclosing the
parameters are optional.

Note: The DEMODULE parameter is also required if DEPARM is
specified.

2412A030DEPARM = parameters

Chapter 4: Runtime Parameters
DEPARM

98 Teradata Archive/Recovery Utility Reference

In the next example, the Protegrity data encryption module and the AES 128-bit algorithm are
enabled. The single quotes enclosing the DEPARM value are optional. (In addition, the
example also specifies eight Teradata Database sessions, direct tape positioning, and duplicate
output to a file called ARCALL.OUT.)

ARCMAIN SESSIONS=8 CATALOG OUTLOG=ARCALL.OUT DEMODULE=PEPBAR.PLM
DEPARM='ALGORITHM=AES128'

Chapter 4: Runtime Parameters
ERRLOG

Teradata Archive/Recovery Utility Reference 99

ERRLOG

Purpose
The ERRLOG parameter duplicates all the error messages generated by Teradata ARC and
stores them in an alternate file. But all error messages are still present in the standard output
stream.

Syntax

where

Usage Notes

The use of the ERRLOG parameter depends on your operating system:

• On VM systems, name refers to an existing file definition (that is, FILEDEF) and is limited
to eight characters. This limit does not apply to other platforms.

• On MVS systems, name refers to a DD name defined within the step that calls ARCMAIN
and is also limited to eight characters. This limit does not apply to other platforms.

Note: On all other platforms, name refers to a disk file in the current directory.

Specify NOERRLOG to disable the ERRLOG parameter.

Syntax Element Definition

name Name of the alternate error log file for storing these messages

GR01A023

ERRLOG = name

Chapter 4: Runtime Parameters
FATAL

100 Teradata Archive/Recovery Utility Reference

FATAL

Purpose
The FATAL parameter provides a runtime option to the ARCMAIN client that allows you to
request that the program reclassify a normally nonfatal error condition as fatal, and abend if
the selected message is issued.

Syntax

where

Usage Notes

FATAL changes the severity of any Teradata ARC error to FATAL, exit code = 12. For instance,
if you specify that ARC0802 is a fatal error, Teradata ARC immediately exits at ARC0802.

In the next example, if an ARC0802 I/O error or ARC1218 warning message occurs, FATAL
allows you to terminate Teradata ARC immediately rather than having the program run to
completion. Either normally nonfatal error condition will be interpreted as fatal, and the
program terminates:

ARCMAIN FATAL=(802,1218)

The FATAL option allows you to stop the job immediately when one copy of the dump fails to
ensure quick recovery action when only one good copy exists of the archive dump.

ARC1218 warns that a problem table will be skipped and the next table processed. If you
determine that immediate termination is preferable to continuing, the FATAL parameter is
invoked.

Delimiters, such as the equal sign, are mandatory.

Syntax Element Definition

errorno Changes specified errors to a completion code of 12. This is a fatal
condition which terminates ARC.

2412B007

FATAL

= (errorno)

,

Chapter 4: Runtime Parameters
FILEDEF

Teradata Archive/Recovery Utility Reference 101

FILEDEF

Purpose
The FILEDEF parameter maps the internal name of a file to an external name, if specified.

%UEN% enables ARCMAIN to embed the UEN (Utility Event Number) in a filename

Syntax

where

Usage Notes

At execution, internal name, as specified in FILEDEF, is mapped to external name. But not all
internal names need be defined. If the internal name is not defined in FILEDEF, the internal
name itself is used as the external name.

Multiple FILEDEFs may be specified (one filename per FILEDEF). FILEDEFs do not override
each other. Thus, there can be a list of FILEDEFs:

FILEDEF=(archive,ARCHIVE_%UEN%.DAT)
FILEDEF=(ARCHIVE1,C:\TESTARC\ARCHIVE1)
FILEDEF=(ARCHDICT,DICTIONARY_%UEN%)

If %UEN% is part of external name, then at execution of the Teradata ARC statement it is
expanded to the actual UEN (Utility Event Number) or substituted with the value specified in
the UEN runtime parameter in a RESTORE/COPY statement.

Syntax Element Definition

external name External name of a file

internal name Internal name of a file specified in the following Teradata ARC
statements after the FILE keyword:

• ANALYZE

• ARCHIVE

• RESTORE

• COPY

KM01A005

FILEDEF internal name=

FILE

()

FDEF

,'external name'

Chapter 4: Runtime Parameters
FILEDEF

102 Teradata Archive/Recovery Utility Reference

For example, if FILEDEF is defined as follows in an environment variable or in a default
configuration file:

FILEDEF=(archive,ARCHIVE_%UEN%.DAT)

then in the following Teradata ARC script:

ARCHIVE DATA TABLES (DB), RELEASE LOCK, FILE=ARCHIVE

ARCHIVE is the internal name, ARCHIVE_%UEN%.DAT is the external name, and the final
external name is something like ARCHIVE_1234.DAT, assuming that the UEN is 1234.

Chapter 4: Runtime Parameters
HALT

Teradata Archive/Recovery Utility Reference 103

HALT

Purpose
The HALT parameter saves the current state into the restart log and terminates the current
task if, during archive or recovery, the Teradata Database fails or restarts, and the new
configuration differs from the configuration that preceded the failure.

Syntax

Usage Notes

Use this parameter only when online configuration changes and non-fallback tables are
involved. Processing is aborted when any table is non-fallback. If all tables are fallback, HALT
is ignored. HALT affects the database as follows:

• If HALT is not specified, Teradata ARC displays a message and skips to the next table.

• If HALT and PAUSE are both specified, Teradata ARC displays an error message. Specify
HALT or PAUSE, but not both.

Note: If you specify the HALT option and replace a disk after an archive or recovery operation
has been started, the operation cannot be restarted from where it left off. The operation must
be restarted from the beginning.

Specify NOHALT to disable the HALT parameter.

GR01A024

HALT

Chapter 4: Runtime Parameters
HEX

104 Teradata Archive/Recovery Utility Reference

HEX

Purpose
The HEX parameter enables the display of object names in hexadecimal notation. This display
is in internal Teradata Database hexadecimal format, except that the HEX display of object
names from the ANALYZE statement is in the external client format (X’...’).

Syntax

Usage Notes

Use the HEX option to archive/restore table or database names that are created in a character
set that is different from the currently specified character set.

If the HEX option is not used when object names are created in a character set that is not the
currently specified character, the displayed object names might be unreadable or unprintable.
The HEX option is retained across client and Teradata Database restarts.

Following are examples of the HEX parameter.

• From MVS:

//ARCCPY EXEC PGM=ARCMAIN,PARM=’SESSIONS=8 HEX’

• From VM/CMS:

ARCMAIN <SAMPLE.SYSIN.A SESSIONS=8 HEX

Specify NOHEX to disable the HEX parameter.

GR01A025

HEX

Chapter 4: Runtime Parameters
IOMODULE

Teradata Archive/Recovery Utility Reference 105

IOMODULE

Purpose
The IOMODULE parameter specifies the name of an access module.

Syntax

where

Usage Notes

The value of this parameter passes directly to the tape access module. ARCMAIN does not
interpret the value.

Syntax Element Definition

name Name of an access module file

KM01A001

IOMODULE name=

Chapter 4: Runtime Parameters
IOPARM

106 Teradata Archive/Recovery Utility Reference

IOPARM

Purpose
The IOPARM parameter specifies the initialization string for the access module named in the
IOMODULE runtime parameter.

Syntax

where

Usage Notes

The value of this parameter passes directly to the tape access module. ARCMAIN does not
interpret the value.

Syntax Element Definition

‘InitString’ Access module initialization string

KM01A002

IOPARM 'InitString'=

Chapter 4: Runtime Parameters
LOGON

Teradata Archive/Recovery Utility Reference 107

LOGON

Purpose
The LOGON parameter enables the runtime definition of the logon string.

Syntax

Usage Notes

If, for security reasons, you want to avoid defining a password in a Teradata ARC script, use
the LOGON parameter to instead define a logon string at execution time.

If you specify the $LOGON token in the LOGON statement, the logon string is replaced at
execution.

Delimiters are mandatory.

Example

If you specify LOGON on the command line, as follows:

ARCMAIN LOGON=’TDP6/USER1,PWD1’

and the Teradata ARC script contains:

LOGON $LOGON;

then $LOGON is expanded to TPD6/USER1,PWD1 at runtime.

KM01A007

LOGON 'logon string'=

Chapter 4: Runtime Parameters
LOGSKIPPED

108 Teradata Archive/Recovery Utility Reference

LOGSKIPPED

Purpose
The LOGSKIPPED parameter instructs Teradata ARC to log all of the tables that are skipped
during an ARCHIVE operation.

Syntax

Usage Notes

The LOGSKIPPED parameter instructs Teradata ARC to log all of the tables that are skipped
during an ARCHIVE operation. The tables are logged in a table named SkippedTables, which
is created in the ARC catalog database ($ARC by default, or $NETVAULT_CATALOG when
using NetVault).

Teradata ARC skips a table when the table is:

• Currently involved in a restore operation from a different instance of ARC

• Currently involved in a FastLoad or MultiLoad operation

• Missing a table header or a dictionary row, or is otherwise damaged

For each table that is skipped, ARC adds a row in the SkippedTables table. The columns
included in the SkippedTables table are:

• EVENTNUM - Event number of the archive job where the table was skipped.

• DATABASENAME - Database containing the skipped table.

• TABLENAME - Name of the table that was skipped.

• ERRORTIME - TIMESTAMP value of when the error occurred on the table.

• ERRORCODE - Error code that caused Teradata ARC to skip the table.

• ERRORTEXT - Error text for the corresponding error code.

Teradata ARC does not automatically retry tables that are added to the SkippedTables table.
Therefore, ensure that these tables are separately archived when an error condition is fixed.

2412A020

LOGSKIPPED

Chapter 4: Runtime Parameters
OUTLOG

Teradata Archive/Recovery Utility Reference 109

OUTLOG

Purpose
The OUTLOG parameter duplicates standard (stdout) output to a file.

Syntax

Usage Notes

If OUTLOG is specified, all output lines that go to standard (stdout) output are duplicated
and saved in the file pointed to by OUTLOG.

Any existing file with the same name is overwritten.

In mainframe platforms (that is, MVS, VM), limit file names to eight characters.

KM01A009

OUTLOG name=

Chapter 4: Runtime Parameters
PARM

110 Teradata Archive/Recovery Utility Reference

PARM

Purpose
The PARM parameter identifies the file that contains frequently used runtime parameters.

Syntax

where

Usage Notes

The PARM runtime parameter saves frequently used runtime parameters in a separate
parameter file. Its functionality is analogous to DEFAULT.

ARCMAIN reads the PARM file, then builds the parameter list line and appends the actual
parameter list to it. PARM or PARM=ddname must be the first parameter in the parameter
list, meaning that PARM cannot appear in the middle of the parameter list.

On IBM platforms, if PARM is specified without a ddname, then the default ddname is
SYSPARM.

Use the following NO parameters to disable any previously specified runtime parameters,
including those specified in PARM:

• NOHALT

• NOPAUSE

• NORESTART

• NOHEX

• NOVERBOSE

• NOERRLOG

It is possible to specify the SESSIONS and CHECKPOINT parameters more than once to
override previous instances of these parameters. However, the last instance of the parameter is
the value that is used. For example, if these runtime parameters are specified once in PARM,
then one or more times in the parameter list, only the last instance of the parameter is used.

Syntax Element Definition

ddname ddname (VM/MVS platforms) of the file containing the
frequently used runtime parameters

GR01B021

PARM
= ddname

Chapter 4: Runtime Parameters
PARM

Teradata Archive/Recovery Utility Reference 111

Example

The next example illustrates the use of PARM, including an instance when more than one
parameter (in this case, SESSIONS) is specified in PARM:

//REST EXEC PGM=ARCMAIN,PARM='SESSIONS=80 SESSIONS=40 VERBOSE'

In the example, 40 sessions are used, not 80, because SESSIONS=40 is the last instance of the
parameter specified in PARM.

JCL for the Above Example

Following is sample JCL that includes a PARM file and a parameter list.

//REST EXEC PGM=ARCMAIN,PARM='PARM NOHALT CHECKPOINT=2000'
//*---
//* A SEPARATE DATASET CAN BE USED AND SYSPARM JUST POINT TO IT.
//* SYSPARM IS EXPLICITLY SHOWN HERE FOR ILLUSTRATION PURPOSE.
//SYSPARM DD *
VERBOSE
CHECKPOINT=5000
SESSIONS=80
HALT
/*
//DBCLOG DD DSN=&&T86CLOG,DISP=(NEW,PASS),
// UNIT=SCR,SPACE=(TRK,(8,8),RLSE)
//ARCHIVE DD DSNAME=TEST.TEST.TEST,
// DISP=(OLD,KEEP,KEEP)
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//SYSIN DD *
LOGON TDQA/TEST,TEST;
COPY DATA TABLES (TEST)

,RELEASE LOCK
,DDNAME=ARCHIVE;

LOGOFF;
/*

Note: For both MVS or VM, DDNAME and the FILE keyword are interchangeable. For
example, DDNAME=ARCHIVE is the same as FILE=ARCHIVE.

Chapter 4: Runtime Parameters
PARM

112 Teradata Archive/Recovery Utility Reference

Sample Output

04/29/97 12:15:57 **** **** **** DATABASE COMPUTER
04/29/97 12:15:57 * * * * *
04/29/97 12:15:57 * * **** * PROGRAM: ARCMAIN
04/29/97 12:15:57 * * * * * RELEASE: 06.01.00
04/29/97 12:15:57 **** **** **** BUILD: 9702-16 (Apr 25
1997)
04/29/97 12:15:57 Reading runtime parameters from SYSPARM
04/29/97 12:15:57
04/29/97 12:15:58 RUNTIME PARAMETERS SPECIFIED:
04/29/97 12:15:58 VERBOSE CHECKPOINT=5000 SESSIONS=80 HALT

NOHALT CHECKPOINT=2000
04/29/97 12:15:58
04/29/97 12:16:00 PARAMETERS IN USE:
04/29/97 12:16:00
04/29/97 12:16:00 SESSIONS 80
04/29/97 12:16:00 VERBOSE LEVEL 1
04/29/97 12:16:00 CHECKPOINT FREQUENCY CHANGED TO 2000
04/29/97 12:16:00
04/29/97 12:16:01 CHARACTER SET IN USE: EBCDIC

Chapter 4: Runtime Parameters
PAUSE

Teradata Archive/Recovery Utility Reference 113

PAUSE

Purpose
The PAUSE parameter saves the current state into the restart log and pauses execution if,
during archive or recovery, the Teradata Database fails or restarts and the new configuration
differs from the configuration that preceded the failure.

Syntax

Usage Notes

Use this parameter for non-fallback tables only.

PAUSE causes Teradata ARC to wait for five minutes, then checks the current configuration to
see if it has returned to its previous state. PAUSE remains in its delay loop until the Teradata
Database either returns to its previous state or a time limit is exceeded:

• If the AMPs are in the original configuration, Teradata ARC continues processing the
archive or restore operation from where it left off.

• If the configuration still differs, Teradata ARC pauses for another five minutes and repeats
the process described above.

Teradata ARC repeats the five minute pause and check process 48 times (about four
hours). If after 48 times the configuration is still different, Teradata ARC saves the current
state into the restart log and terminates the current task.

• If PAUSE is not specified with non-fallback tables, the archive is aborted and Teradata ARC
skips to the next table.

• If HALT and PAUSE are both specified, Teradata ARC displays an error message. Either
HALT or PAUSE may be specified, but not both.

In the VM environment, use the CP SET TIMER REAL command to ensure the SLEEP
function works when using PAUSE.

Note: If you specify the PAUSE option and replace a disk after an archive or recovery
operation is started, the operation cannot be restarted from where it left off. The operation
must be restarted from the beginning.

Specify NOPAUSE to disable the PAUSE parameter.

GR01A026

PAUSE

Chapter 4: Runtime Parameters
PERFFILE

114 Teradata Archive/Recovery Utility Reference

PERFFILE

Purpose
The PERFFILE parameter produces a log of Teradata ARC performance data as a source for
job performance monitoring, analysis, and debugging.

Syntax

Each line of the performance file contains a two-character record type followed by the data
provided for this type, as shown in the next table.

Syntax Element Definition

BG <timestamp>
<IOPARM>

Beginning of performance log.

<IOPARM> is the list of parameters given in the IOPARM command-
line option (if any).

EN <timestamp>
<exitcode>

Indicates the end of the Teradata ARC job.

<exitcode> is the final exit code returned by ARC.

ER <timestamp>
<exitcode> <errorcode>
<string>

Indicates a warning, error, or failure by ARC.

<exitcode> is the severity of the error (4 for warning, 8 for error, 12 for
failure, and 16 for internal error).

<errorcode> is the Teradata ARC or Teradata Database error code for
the error.

<string> is the string output by Teradata ARC indicating the error.

LG <timestamp>
<logon-str>

Displays the logon time and the logon string given to Teradata ARC in
the ARC script.

OE <timestamp> <TS-
end> <objtype> <name>

Indicates the end time for the named object.

<TS-end> is the end time for the object.

<objtype> is the type of object (database-level, 'D', or table-level, 'T').

<name> is the name of the database (and table for table-level objects).

OS <timestamp>
<objtype> <name>

Indicates the start time for the named object.

<objtype> is the type of object (database-level, 'D', or table-level, 'T').

<name> is the name of the database (and table for table-level objects).

2412a009

PERFFLE =PLOG

Chapter 4: Runtime Parameters
PERFFILE

Teradata Archive/Recovery Utility Reference 115

Usage Notes

In mainframe platforms (that is, MVS, VM), limit file names to eight characters.

ST <timestamp>
<statement>

Displays the currently executing statement (from the ARC script).

TB <TS-begin> <TS-build>
<TS-end> <bytes> <name>

Indicates the output at the end of archiving or restoring each table.

TS-begin is the time the table started.

TS-build is the time the build process started.

TS-end is the ending.

<bytes> is the number of bytes of data archived or restored.

<name> is the name of the database and table archived or restored.

VB <timestamp> <string> Indicates that a verbose message is output by ARC.

<string> is the message that is displayed.

Syntax Element Definition

Chapter 4: Runtime Parameters
RESTART

116 Teradata Archive/Recovery Utility Reference

RESTART

Purpose
The RESTART parameter specifies that the current operation is a restart of a previous
operation that was interrupted by a client failure.

Syntax

Usage Notes

In the case of restart, Teradata ARC uses the SESSIONS parameter that is specified the first
time the utility is run. Do not change the input file between the initial execution and restart.

Specify NORESTART to disable the RESTART parameter.

For further information about dealing with client failures during an archive or recovery
operation, see Chapter 7: “Restarting Teradata ARC.”.

GR01A027

RESTART

Chapter 4: Runtime Parameters
RESTARTLOG

Teradata Archive/Recovery Utility Reference 117

RESTARTLOG

Purpose
The RESTARTLOG parameter specifies the restart log name for ARCMAIN.

Syntax

Usage Notes

The RESTARTLOG runtime option is available only on Windows and MP-RAS platforms.
(The restart log name on IBM VM/MVS platforms cannot be changed by RESTARTLOG.)

Use the RESTARTLOG as follows:

• Teradata ARC adds the extension type RLG to the name of the file specified in
RESTARTLOG. Therefore, do not use this extension in the name of the restart log.

• The restart log is created under the current directory or the working directory, if defined,
unless the full path is specified.

• If RESTARTLOG is not specified, database DBCLOG is the default name of the restart log
on the IBM platform. On other platforms, yymmdd_hhmmss is date and time, and <n> is
the process ID in the following example of a default restart log name:
ARCLOGyymmdd_hhmmss_<n>.RLG.

• Teradata ARC does not automatically remove the restart log files after the successful
completion, therefore clean the files periodically.

• Delimiters depend on the name of the restart log being specified.

Example

RESTARTLOG=RESTARTLOG
RLOG=’C:\TESTARC\JOB12345’

KM01A003

RESTARTLOG filename=

RLOG

Chapter 4: Runtime Parameters
SESSIONS

118 Teradata Archive/Recovery Utility Reference

SESSIONS

Purpose
The SESSIONS parameter specifies the number of Teradata Database sessions that are
available for archive and recovery operations. This number does not include any additional
sessions that might be required to control archive and recovery operations.

Syntax

where

Usage Notes

In general, the amount of system resources (that is, memory and processing power) that are
required to support the archive or recovery increases with the number of sessions. The impact
on a particular system depends on the specific configuration.

Teradata ARC uses two control sessions to control archive and recovery operations. The
LOGON statement always connects these sessions no matter what type of operation being
performed. Teradata ARC connects additional data sessions based on the number indicated in
the SESSIONS parameter. These sessions are required for the parallel processing that occurs in
archive and restore or copy operations.

If additional data sessions are required, Teradata ARC connects them at one time. Teradata
ARC calculates the number of parallel sessions it can use, with maximum available being the
number of sessions indicated with this parameter. Any connected sessions that are not actually
used in the operation result in wasted system resources.

Syntax Element Definition

nnn Number of data sessions.

The default is 4.

2412A018

 = nnnSESSIONS

Chapter 4: Runtime Parameters
SESSIONS

Teradata Archive/Recovery Utility Reference 119

Table 11 indicates the data session requirements for archive and restore operations.

Table 11: Data Session Requirements

Operation Data Session Requirements

All-AMPs archive No more than one session per AMP.

Cluster or specific
archive

Teradata ARC calculates the nearest multiple of online AMPs for the
operation and assigns tasks evenly among the involved AMPs.

For example, if you archive four AMPs with nine sessions specified, Teradata
ARC actually uses eight sessions (two per AMP). The extra connected
session wastes system resources since it is unused.

Restore/copy Restore operations use all the sessions specified using the sessions parameter.

Chapter 4: Runtime Parameters
STARTAMP

120 Teradata Archive/Recovery Utility Reference

STARTAMP

Purpose
The STARTAMP parameter allows you to specify a starting AMP for every all-AMP ARCHIVE
job.

Syntax

where

Usage Notes

Using STARTAMP during multiple all-AMP ARCHIVE jobs can increase archive
performance. Specifying a different AMP for each job minimizes potential file contention.

If STARTAMP is not used, Teradata ARC randomly selects a starting AMP for each archived
table.

Example

STARTAMP=1

or

AMP=1

Syntax Element Definition

ampid Starting AMP for a single all-AMP ARCHIVE job

2412A016

STARTAMP =ampid

AMP

Chapter 4: Runtime Parameters
UEN (Utility Event Number)

Teradata Archive/Recovery Utility Reference 121

UEN (Utility Event Number)

Function

The UEN parameter specifies the value that defines %UEN% in a RESTORE/COPY
operation. UEN is automatically generated during an archive.

Syntax

where

Usage Notes

In a RESTORE/COPY statement, %UEN%, if used, is expanded using the Utility Event
Number specified in UEN.

Example

If FILEDEF is defined as follows in an environment variable or in a default configuration file:

FILEDEF=(archive,ARCHIVE_%UEN%.DAT)

then in the following Teradata ARC script, ARCHIVE is the internal name, and
ARCHIVE_%UEN%.DAT is the external name:

ARCHIVE DATA TABLES (DB), RELEASE LOCK, FILE=ARCHIVE

The final external name of this ARC script is ARCHIVE_1234.DAT, assuming that the UEN is
1234. (The output of this archive displays the UEN.)

Therefore, if you run a restore with UEN=1234 and use the above FILEDEF, then in the
following Teradata ARC script, the actual external name will be ARCHIVE_1234.DAT:

RESTORE DATA TABLES (DB), RELEASE LOCK, FILE=ARCHIVE

Syntax Element Definition

n Utility event number, for example, UEN=12345

KM01A006

UEN n=

Chapter 4: Runtime Parameters
VERBOSE

122 Teradata Archive/Recovery Utility Reference

VERBOSE

Purpose
The VERBOSE parameter directs Teradata ARC progress status information to the standard
output device (for example, SYSPRINT for IBM platforms). The amount of status
information sent is determined by the level specified in the parameter.

Syntax

where

Usage Notes

Progress status report is displayed on a standard output device. On the IBM mainframe
platform, the progress status is sent to the SYSPRINT DD with other regular Teradata ARC
output lines.

VERBOSE provides three levels of progress status (1 through 3):

• Level 1is specified as:

VERBOSE, VERB or VB

• Levels 2 through 3 are specified as:

Level 2 - VERBOSE2, VERB2 or VB2
Level 3 - VERBOSE3, VERB3 or VB3

Syntax Element Definition

n Level of program status information sent to the standard output device,
where n represents 2 or 3.

VERBOSE without an n value provides the lowest level of status
information.

The amount of process status information sent to standard output
increases with a higher n value.

2412A025

VERBOSE
VERBOSEn

VERB

VERBn

VB

VBn

NOVERBOSE
NOVERB

NOVB

Chapter 4: Runtime Parameters
VERBOSE

Teradata Archive/Recovery Utility Reference 123

While VERBOSE level 1 is designed for normal operation, the other two levels are for
diagnosis and debugging. The performance of Teradata ARC is affected when these higher
VERBOSE levels are used, especially if a low CHECKPOINT value is specified.

The output of VERBOSE is preceded by three dashes (---) for easy identification and filtering
by other utilities.

For ARCHIVE and RESTORE/COPY operations, the amount of data processed in the data
phase is displayed at each checkpoint. Teradata ARC internally takes checkpoints for every n
number of data blocks processed for restart purposes. Therefore, it is possible to control the
frequency of display of status information when VERBOSE is specified by the CHECKPOINT
parameter setting. See “CHECKPOINT” on page 88.

For the RESTORE/COPY operations, each build request is displayed in addition to the data
processed before the request is sent to the Teradata Database. However, because the client has
no control of the actual build execution, once the request is sent, Teradata ARC waits for the
completion of the build request.

Specify NOVERBOSE to disable the VERBOSE parameter. The default is NOVERBOSE.

Example
Following is sample output that results from specifying VERBOSE level 1.

Caution: The organization and contents of informational progress report lines changes without notice
with new releases of Teradata ARC. Therefore, do not develop scripts or programs that exactly
copy this example.
04/29/97 10:40:38 **** **** **** DATABASE COMPUTER
04/29/97 10:40:38 * * * * *
04/29/97 10:40:38 * * **** * PROGRAM: ARCMAIN
04/29/97 10:40:38 * * * * * RELEASE: 06.01.00
04/29/97 10:40:38 **** **** **** BUILD: 9702-16 (Apr 25 1997)
04/29/97 10:40:38
04/29/97 10:40:38 RUNTIME PARAMETERS SPECIFIED:
04/29/97 10:40:38 verbose checkpoint=5
04/29/97 10:40:38
04/29/97 10:40:40 PARAMETERS IN USE:
04/29/97 10:40:40
04/29/97 10:40:40 SESSIONS 4
04/29/97 10:40:40 VERBOSE LEVEL 1
04/29/97 10:40:40 CHECKPOINT FREQUENCY CHANGED TO 5
04/29/97 10:40:40
04/29/97 10:40:41 CHARACTER SET IN USE: EBCDIC
04/29/97 10:40:41 LOGON TDRU/JCK,
04/29/97 10:40:42 LOGGED ON 2 SESSIONS
04/29/97 10:40:42 STATEMENT COMPLETED
04/29/97 10:40:42
04/29/97 10:40:42 ARCHIVE data tables (jck),
04/29/97 10:40:42 release lock,
04/29/97 10:40:42 file=archive;
04/29/97 10:40:43 LOGGED ON 4 SESSIONS
04/29/97 10:40:44 UTILITY EVENT NUMBER - 79
04/29/97 10:40:44
04/29/97 10:40:44 ARCHIVING DATABASE "JCK"
04/29/97 10:40:54 --- Starting table "ACCESSRIGHTS"

Chapter 4: Runtime Parameters
VERBOSE

124 Teradata Archive/Recovery Utility Reference

04/29/97 10:40:56 --- CHKPT: 129,510 bytes, 2,184 rows received
04/29/97 10:40:57 --- CHKPT: 183,200 bytes, 3,094 rows received
04/29/97 10:40:58 --- CHKPT: 322,971 bytes, 5,463 rows received
04/29/97 10:40:59 --- CHKPT: 436,310 bytes, 7,384 rows received
04/29/97 10:41:00 --- CHKPT: 526,226 bytes, 8,908 rows received
04/29/97 10:41:01 --- CHKPT: 634,845 bytes, 10,749 rows received
04/29/97 10:41:01 TABLE "ACCESSRIGHTS" - 669,242 BYTES, 11,332
ROWS ARCHIVED
04/29/97 10:41:01 --- Starting table "ACCOUNTS"
04/29/97 10:41:02 --- CHKPT: 1,228 bytes, 17 rows received
04/29/97 10:41:02 --- CHKPT: 1,228 bytes, 17 rows received
04/29/97 10:41:04 --- CHKPT: 1,734 bytes, 28 rows received
04/29/97 10:41:11 --- CHKPT: 2,608 bytes, 47 rows received
04/29/97 10:41:11 TABLE "ACCOUNTS" - 2,930 BYTES, 54 ROWS

ARCHIVED
04/29/97 10:41:11 --- Starting table "DBASE"
04/29/97 10:41:12 --- CHKPT: 4,751 bytes, 13 rows received
04/29/97 10:41:13 --- CHKPT: 7,711 bytes, 23 rows received
04/29/97 10:41:14 --- CHKPT: 14,599 bytes, 47 rows received
04/29/97 10:41:14 TABLE "DBASE" - 17,556 BYTES, 57 ROWS ARCHIVED
04/29/97 10:41:14 "JCK" - LOCK RELEASED
04/29/97 10:41:14 DUMP COMPLETED
04/29/97 10:41:14 STATEMENT COMPLETED
04/29/97 10:41:14
04/29/97 10:41:14
04/29/97 10:41:14
04/29/97 10:41:14 RESTORE DATA TABLES JCK),release lock,

file=archive;
04/29/97 10:41:15 --- ARCHIVED AT 04-29-97 10:40:43
04/29/97 10:41:15 --- ARCHIVED FROM ALL AMP DOMAINS
04/29/97 10:41:15 --- UTILITY EVENT NUMBER IN ARCHIVE - 79
04/29/97 10:41:16 UTILITY EVENT NUMBER - 80
04/29/97 10:41:22 STARTING TO RESTORE DATABASE "JCK"
04/29/97 10:41:26 DICTIONARY RESTORE COMPLETED
04/29/97 10:41:29 --- Starting table "ACCESSRIGHTS"
04/29/97 10:41:30 --- CHKPT: 145,204 bytes, 2,450 rows sent
04/29/97 10:41:30 --- CHKPT: 145,204 bytes, 2,450 rows sent
04/29/97 10:41:30 --- CHKPT: 215,414 bytes, 3,640 rows sent
04/29/97 10:41:31 --- CHKPT: 325,449 bytes, 5,505 rows sent
04/29/97 10:41:31 --- CHKPT: 448,582 bytes, 7,592 rows sent
04/29/97 10:41:32 --- CHKPT: 558,440 bytes, 9,454 rows sent
04/29/97 10:41:32 --- CHKPT: 667,059 bytes, 11,295 rows sent
04/29/97 10:41:32 --- Building fallback subtable for index 0.
04/29/97 10:41:32 --- Clearing build flag for index 0.
04/29/97 10:41:33 --- Building index subtable for index 4.
04/29/97 10:41:33 --- Clearing build flag for index 4.
04/29/97 10:41:34 --- Building index subtable for index 8.
04/29/97 10:41:34 --- Clearing build flag for index 8.
04/29/97 10:41:34 "ACCESSRIGHTS" - 669,242 BYTES, 11,332 ROWS

RESTORED
04/29/97 10:41:34 --- Starting table "ACCOUNTS"
04/29/97 10:41:35 --- CHKPT: 1,320 bytes, 19 rows sent
04/29/97 10:41:35 --- CHKPT: 2,010 bytes, 34 rows sent
04/29/97 10:41:35 --- CHKPT: 2,838 bytes, 52 rows sent
04/29/97 10:41:35 --- Building fallback subtable for index 0.
04/29/97 10:41:36 --- Clearing build flag for index 0.
04/29/97 10:41:36 "ACCOUNTS" - 2,930 BYTES, 54 ROWS RESTORED
04/29/97 10:41:59 --- Starting table "DBASE"
04/29/97 10:42:00 --- CHKPT: 5,325 bytes, 15 rows sent

Chapter 4: Runtime Parameters
VERBOSE

Teradata Archive/Recovery Utility Reference 125

04/29/97 10:42:00 --- CHKPT: 9,146 bytes, 28 rows sent
04/29/97 10:42:00 --- CHKPT: 15,834 bytes, 51 rows sent
04/29/97 10:42:00 --- CHKPT: 15,834 bytes, 51 rows sent
04/29/97 10:42:00 --- Building fallback subtable for index 0.
04/29/97 10:42:01 --- Clearing build flag for index 0.
04/29/97 10:42:01 --- Building index subtable for index 4.
04/29/97 10:42:02 --- Building fallback subtable for index 4.
04/29/97 10:42:02 --- Clearing build flag for index 4.
04/29/97 10:42:02 "DBASE" - 17,556 BYTES, 57 ROWS RESTORED
04/29/97 10:42:03 "JCK" - LOCK RELEASED
04/29/97 10:42:03
04/29/97 10:42:03 STATEMENT COMPLETED
04/29/97 10:42:03
04/29/97 10:42:03
04/29/97 10:42:03
04/29/97 10:42:03 LOGOFF;
04/29/97 10:42:03 LOGGED OFF 6 SESSIONS
04/29/97 10:42:03 STATEMENT COMPLETED
04/29/97 10:42:03
04/29/97 10:42:03
04/29/97 10:42:03 UTILITY TERMINATED

Chapter 4: Runtime Parameters
WORKDIR

126 Teradata Archive/Recovery Utility Reference

WORKDIR

Purpose
The WORKDIR parameter specifies the name of the working directory.

Syntax

Usage Notes

When you specify a directory with WORKDIR, the restart log, the output log, the error log,
and the hard disk archive files are created in and read from this directory. When you do not
specify WORKDIR, the current directory is the default working directory.

Delimiters depend on the name of the working directory being specified.

Example

WORKDIR=C:\TESTARC
WORKDIR=’C:\TEST ARC’

KM01A004

WORKDIR directory path=

WDIR

Teradata Archive/Recovery Utility Reference 127

CHAPTER 5

Return Codes and UNIX Signals

This chapter describes these topics:

• Return Codes

• UNIX Signals

Return Codes

Teradata ARC provides a return (or condition) code value to the client operating system
during termination logic. The return code indicates the final status of a task.

Return code integers increase in value as the events causing them increase in severity, and the
presence of a return code indicates that at least one message that set the return code is printed
in the output file. Any number of messages associated with a lesser severity might also be
printed in the output file. For more information about error messages, see the Messages guide.

Chapter 5: Return Codes and UNIX Signals
Return Codes

128 Teradata Archive/Recovery Utility Reference

Table 12 lists the Teradata ARC return codes, their descriptions, and the recommended
solution for each.

Table 13 lists the Teradata Database error message numbers, their associated severity levels,
and the associated return codes.

The six error messages listed as NORMAL severity are restartable errors that indicate the
Teradata Database failed. Teradata ARC waits for the Teradata Database to restart before it
automatically resubmits or restarts any affected requests or transactions.

Any other message numbers not shown in this table are treated as FATAL.

Table 12: Return Codes

Return
Code Description Recommended Action

0 A normal termination of the utility.

4 At least one warning message is in the
output listing.

Review the output to determine which
warnings and possible consequences are
printed.

8 At least one nonfatal error message is in
the output listing.

A nonfatal error normally indicates that
you requested something that could not
be done. A nonfatal error does not
adversely affect other requests nor does
it terminate task execution.

Review the output to determine which errors
are listed, and then deal with each error
accordingly.

12 A fatal error message is in the output
listing.

A fatal error terminates execution. You
might be able to restart the task.

Review the output to determine which error
occurred and its cause.

16 An internal software error message is in
the output listing.

An internal error terminates execution.

Gather as much information as possible
(including the output listing), and contact
Teradata customer support.

Chapter 5: Return Codes and UNIX Signals
Return Codes

Teradata Archive/Recovery Utility Reference 129

Note: The DBSERROR command line parameter allows the specification of an error severity
level with Teradata Database error code 2843. For example, to specify that error 2843 is a
warning (severity level 4), use this syntax:

ARCMAIN DBSERROR=(2843,4)

Table 14 lists the error message numbers that are generated on the client side, their associated
severity levels, and associated return codes.

Table 13: Database Error Messages

Database
Error
Message
Numbers Severity Level Return Code

2825

2826

2828

3119

3120

3897

NORMAL 0

2123

2631

2639

2641

2654

2805

2835

2837

2838

2840

2921

2971

2972

3111

3598

3603

3803

3804

3805

5419

5512

5588

6933

7485

7486

8234

8258

8261

8265

8266

8267

8268

8269

8270

8271

8272

8273

8274

8295

8297

WARNING 4

2815

2830

2843

2897

2920

2926

3523

3524

3566

3613

3656

3658

3737

3802

3807

3824

3853

3873

3877

3916

3933

5310

8232

8298

ERROR 8

2538

2541

2644

2809

2828

2866

2868

3596

8228

8229

8230

8231

8242

8243

8244

8245

8246

8247

8248

8249

8250

8251

8252

8253

8254

FATAL 12

None INTERNAL 16

Chapter 5: Return Codes and UNIX Signals
Return Codes

130 Teradata Archive/Recovery Utility Reference

Table 14: Client-Generated Error Messages

Client
Generated
Error
Message
Number
(ARCxxxx) Severity Level Return Code

 5

 6

 12

 13

18

20

22

101

103

104

106

107

111

113

118

120

203

225

703

706

707

708

1001

1003

1004

1005

1006

1010

1011

1012

1014

1015

1016

1022

1023

1024

1025

1026

1027

1029

1213

1214

1217

1218

1223

1225

1226

1228

1232

1235

1239

1240

1241

1242

1244

1245

1249

1250

1251

1254

1256

1257

1263

1266

1267

1269

1272

1401

1402

1403

1404

1501

1800

1801

1803

1804

1805

1900

2202

WARNING 4

108

119

715

802

1013

1017

1030

1200

1202

1206

1218

1227

1248

1268

1273

1406

1407

1408

1409

1410

2100

2102

2103

2104

2107

2201

ERROR 8

Chapter 5: Return Codes and UNIX Signals
Return Codes

Teradata Archive/Recovery Utility Reference 131

3

4

7

8

9

10

11

14

15

16

17

19

21

23

24

25

26

100

102

105

109

110

112

114

115

116

117

200

201

202

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

600

601

700

702

701

704

705

710

711

712

713

714

716

800

801

803

804

805

806

807

808

1000

1002

1018

1019

1020

1021

1028

1201

1203

1204

1207

1208

1209

1210

1211

1215

1216

1219

1220

1221

1222

1230

1231

1233

1234

1236

1237

1238

1243

1246

1247

1252

1253

1255

1258

1259

1260

1261

1262

1264

1265

1270

1271

1400

1405

1500

1802

1806

1901

2000

2001

2002

2003

2004

2101

2105

2106

2200

2203

2204

2205

FATAL 12

1 206 INTERNAL 16

Table 14: Client-Generated Error Messages (continued)

Client
Generated
Error
Message
Number
(ARCxxxx) Severity Level Return Code

Chapter 5: Return Codes and UNIX Signals
UNIX Signals

132 Teradata Archive/Recovery Utility Reference

UNIX Signals

UNIX signals are predefined messages sent between two UNIX processes to communicate the
occurrence of unexpected external events or exceptions.

A knowledge of UNIX signals is important if you are running Teradata ARC in a UNIX
operating system because you cannot use the Teradata ARC UNIX signals in any module or
routine that you program for use with Teradata ARC. When one of these signals is received,
Teradata ARC terminates with a return code of 16.

Teradata ARC uses these UNIX signals:

• SIGILL (illegal signal)

• SIGINT (interrupt signal)

• SIGSEGV (segmentation violation signal)

• SIGTERM (terminate signal)

Teradata Archive/Recovery Utility Reference 133

CHAPTER 6

Archive/Recovery Control Language

The syntax of Teradata ARC control language is similar to Teradata SQL, that is, each
statement is composed of words and delimiters and is terminated by a semicolon. Teradata
ARC writes each statement (and a response to each statement) to an output file.

Note: For simplified descriptions of the Teradata ARC control language, experienced Teradata
ARC users might want to refer to the Archive/Recovery chapter of the Teradata Tools and
Utilities Command Summary, which provides only syntax diagrams and a brief description of
the syntax variables for each Teradata client utility.

The Teradata ARC control statements perform these types of activities:

• Session statements begin and end utility tasks

• Archive statements perform archive and restore activities, and build indexes

• Recovery statements act on journals, and rollback or rollforward database or table activity

• Data encryption

Table 15 summarizes Teradata ARC statements. For more detail, refer to the sections that
follow the table.

Table 15: Summary of Teradata ARC Statements

Statement Activity Function

ANALYZE Archive Reads an archive tape and displays content
information

ARCHIVE Archive Archives a copy of database content to a client resident
file in the specified format

BUILD Archive Builds indexes for data tables and fallback data for
fallback tables

CHECKPOINT Recovery Marks a journal table for later archive or recovery
activities

COPY Archive Re-creates copies of archived databases or tables. Also,
restores archived files from one system to another.

DELETE DATABASE Miscellaneous Deletes a partially restored database

DELETE JOURNAL Recovery Deletes a saved or restored journal

ENABLE DATA
EXTENSION

Miscellaneous Enables an extension module

ENABLE ENCRYPTION Encryption Enables an encryption extension module

Chapter 6: Archive/Recovery Control Language

134 Teradata Archive/Recovery Utility Reference

LOGDATA Security Specifies any additional logon or authentication data
required by an extended security mechanism.

LOGGING ONLINE
ARCHIVE OFF

Archive Ends the online archive process.

LOGGING ONLINE
ARCHIVE ON

Archive Begins the online archive process.

LOGMECH Security Sets the extended security mechanism used by
Teradata ARC to log onto a Teradata Database.

LOGOFF Session Control Ends a Teradata session and terminates Teradata ARC

LOGON Session Control Begins a Teradata session

QUIT Session Control See LOGOFF.

RELEASE LOCK Miscellaneous Releases a utility lock on a database or table

RESTORE Archive Restores objects from an archive file to specified AMPs

REVALIDATE
REFERENCES FOR

Archive Validates referenced indexes that have been marked
inconsistent during restore

ROLLBACK Recovery Restores a database or tables to a state that existed
before some change

ROLLFORWARD Recovery Restores a database or tables to its (their) state
following a change

SET QUERY_BAND Miscellaneous Provides values for a session to precisely identify
the origins of a query.

Table 15: Summary of Teradata ARC Statements (continued)

Statement Activity Function

Chapter 6: Archive/Recovery Control Language
ANALYZE

Teradata Archive/Recovery Utility Reference 135

ANALYZE

Purpose
The ANALYZE statement reads an archive tape and displays information about its content.

Syntax

where

Syntax Element Description

ALL * Analyzes all databases in the archive file.

CATALOG Generates/rebuilds the CATALOG table in the CATALOG database.
See CATALOG in Chapter 4: “Runtime Parameters”

(dbname) Name of the database to analyze.

(dbname1) TO (dbname2) List of alphabetically client databases.

The delimiting database names need not identify actual databases.
Database DBC is not included as part of the range.

DISPLAY Displays information about the identified databases.

FILE Analyzes a file.

LONG Displays the names of all data tables, journal tables, stored
procedures, views, macros and triggers within the specified
databases.

name Name of the archive data set to analyze.

VALIDATE Reads each archive record for the specified database to check that
each block on the file can be read.

ANALYZE *
ALL

,

(dbname)

(dbname1)-TO-(dbname2)

, DISPLAY

, VALIDATE

A

LONG

A

2412A012

, FILE = name ;

,

CATALOG

Chapter 6: Archive/Recovery Control Language
ANALYZE

136 Teradata Archive/Recovery Utility Reference

Usage Notes

The ANALYZE statement provides the following information about the specified databases:

• Time and date the archive operation occurred.

• Whether the archive is of all AMPs, clusters of AMPs, or specific AMPs.

• The name of each database, data table, journal table, stored procedure, view and macro in
each database, and the fallback status of the tables (if you specify the LONG option).

• The number of bytes and rows in each table (if you specify either the LONG or VALIDATE
option).

• If an archive file contains a selected partition archive of a table, the bounding condition
used to select the archived partitions is displayed with an indication as to whether the
bounding condition is well-defined.

• Online logging information.

• User-Defined Method (UDM) and User-Defined Type (UDT) information.

It is possible to specify both the DISPLAY and VALIDATE options in a single ANALYZE
statement. The default is DISPLAY.

Alternate Character Set Support

The ANALYZE statement requires a connection to the Teradata Database when object names
are specified in internal RDBMS hexadecimal format (’<...>’XN) on the input statement,
because Teradata ARC cannot normally accept object names in internal RDBMS format.
Although the ANALYZE statement does not typically require a connection to the Teradata
Database, under this circumstance the object names in internal hexadecimal must be
translated by the Teradata Database into the external client format (X’...’) to be used by the
ARCMAIN program. This connection is done by the LOGON statement.

Failure to make a connection to the Teradata Database results in the object name being
skipped by the ANALYZE operation, which produces the following warning message:

ARC0711 DBS connection required to interpret object name. %s skipped.

In addition, when the HEX parameter is executed, HEX display of object names from the
ANALYZE statement is in the external client format (X’...’). This is because object names in
ANALYZE statements may contain “hybrid” EBCDIC and kanji EUC, or EBCDIC and
kanjiShiftJIS single byte and multibyte characters, which cannot be translated into internal
RDBMS format, but can be translated into external client format.

Note: Hybrid object names result when you archive an object created in the KANJIEUC or
KANJISJIS character set from a KANJIEBCDIC mainframe client, but the hexadecimal
representation of the object being archived is not used. In such a circumstance, the Teradata
Database cannot properly translate the character set and produces a hybrid object name
composed of single byte characters from the EBCDIC character set and multibyte characters
from the creating character set (UNIX or DOS/V). The hybrid object name cannot be
understood by the Teradata Database.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

Teradata Archive/Recovery Utility Reference 137

ARCHIVE

Purpose
The ARCHIVE statement archives a copy of a database or table to some type of portable
media. Use ARCHIVE to extract data from a Teradata Database. Use the COPY or RESTORE
statement to import data to a Teradata Database.

Note: DUMP is an alias of ARCHIVE.

Syntax

2412F012

ARCHIVE
DICTIONARY

NO FALLBACK

JOURNAL

A

F

DATA TABLES
TABLE

,
C

ALL

, EXCLUDE

(xdbname1)-TO-(xdbname2)

(xdbname)

D

,

C

CLUSTERS
CLUSTER

= nnn

,

ED
, RELEASE LOCK , INDEXES

AMP= n

, 5

(dbname)

ALL

(dbname.tablename)

A B

B

(

,

xtablename

EXCLUDE TABLE/TABLES xdbname.xtablename

,

(EXCLUDE TABLE/TABLES ((

(((

xdbname tablename.x

FE

4096

(

,

PARTITIONS WHERE (!conditional expression!) ((

;, FILE = nameF

2

, NONEMPTY DATABASES

, NONEMPTY DATABASE

, USE

GROUP
READ LOCK, ABORT , ONLINE

FORCED

, KEEP LOGGING

Chapter 6: Archive/Recovery Control Language
ARCHIVE

138 Teradata Archive/Recovery Utility Reference

where

Syntax Element Description

DATA TABLE or DATA
TABLES

Archives fallback, non-fallback, or both types of tables from all
AMPs or from clusters of AMPs.

DICTIONARY TABLE or
DICTIONARY TABLES

Archives only the dictionary rows of a table.

A dictionary archive of a database includes all table, view, macro
and trigger definitions, and dictionary entries for stored
procedures. This option includes the table definition for the
specified table in the archive only if you archive a specific table.

NO FALLBACK TABLE or
NO FALLBACK TABLES

Archives non-fallback table from specific AMPs to complete a
previous all-AMPs or cluster archive taken with processors offline.

JOURNAL TABLE or
JOURNAL TABLES

Archives dictionary rows for journal table and the saved subtable of
journal table.

(dbname) Name of the database from which tables are archived.

This causes all tables of the specified type in the database to be
archived.

ALL Archives all tables from the named database and its descendants, in
alphabetical order.

(dbname.tname) Name of a table within the named database to archive.

All tables must be distinct within the list. Duplicate tables are
ignored.

EXCLUDE Prevents tables in the listed database from being archived. Note that
individual tables cannot be excluded using this option. Individual
tables can be excluded using the EXCLUDE TABLE(S) option after
each database. See more in EXCLUDE TABLE, below.

(xdbname) Name of a database to exclude.

ALL Excludes the named database and its descendants.

(xdbname1) TO (xdbname2) Alphabetical list of client databases to exclude.

The delimiting database names need not identify actual databases.
Database DBC is not included within a range.

EXCLUDE TABLE or
EXCLUDE TABLES

Prevents individual tables in the listed database from being
archived.

(xtablename) Name of an individual table in the designated database to exclude.
Multiple tables are separated by commas.

This form (without a database name prefix) is used only when ALL
has not been designated

(xdbname.xtablename) List of fully-qualified tables (i.e., prefixed by database name) to
exclude. This form is used only when ALL has been specified with
the EXCLUDE TABLES keywords.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

Teradata Archive/Recovery Utility Reference 139

PARTITIONS WHERE Specifies the conditional expression for selecting partitions. If the
condition selects a partial partition, the entire partition is archived.

(!conditional expression!) Conditional expression for specifying selected partitions.

CLUSTERS = nnn or
CLUSTER = nnn

Specifies AMP clusters to archive, where nnn is the number of the
clusters, up to 4096 clusters.

AMP = n Specifies the AMP (or a list of AMPs) to archive for Teradata
Database, where n is the number of the AMP, up to five AMPs.

RELEASE LOCK Releases utility locks on the identified objects when the archive
operation completes successfully.

Warning: Releasing a HUT lock while another Teradata ARC job is
running could result in data corruption and/or
unexpected errors from ARCMAIN or the Teradata
Database. Refer to “RELEASE LOCK Keyword” on
page 143 for more information.

FORCED When specified, FORCED will instruct ARC to attempt to release
any placed locks in the event that the ARCHIVE statement fails.

Note: The HUT lock is not guaranteed to be released in all cases.
Specifically, the following cases will result in a leftover lock:

• If ARC is forcibly aborted by the user or operating system.

• If communication to the Teradata Database is lost and
can not be reestablished.

• If an internal failure occurs in ARC, such that program
control can not proceed to, or complete, the release lock
step.

INDEXES Archives data blocks used for secondary indexing.

This option is not available for archiving selected partitions of PPI
tables, although it is allowed for a full-table archive of a PPI table.

ABORT Aborts an all-AMPs or cluster operation if an AMP goes offline
during the archive of non-fallback tables or single image journal
tables.

ONLINE Initiates an online archive on a table or database.

KEEP LOGGING Overrides the automatic termination of an online archive that was
initiated with the ONLINE option.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
ARCHIVE

140 Teradata Archive/Recovery Utility Reference

Access Privileges

To archive a database or a table in a database, specify one of the following for the user name in
the LOGON statement:

• The ARCHIVE privilege on the database or table to archive

• Ownership of the database or table

To archive database DBC, the user name must either be “User DBC” or be granted the
ARCHIVE and SELECT privileges by user DBC.

To archive a journal table, the user name must have the ARCHIVE privilege on one of the
following:

• The journal table itself

• The database that contains the journal table

USE READ LOCK or USE
GROUP READ LOCK

Applies a read or group HUT lock on the entity being archived.
This option is available only when archiving data tables.

Specify the GROUP parameter only when you archive all AMPs or
cluster AMPs. The GROUP keyword is rejected in a specific AMP
archive operation.

If you specify the GROUP parameter during an archive, you will be
unable to use the archive if you are restoring to a system that has a
different hash function or configuration than the source system.
Therefore, perform an archive with no GROUP parameter prior to a
major release upgrade or re-configuration.

To use the GROUP READ LOCK option, after-image journaling
must be enabled for the tables.

NONEMPTY DATABASES
or NONEMPTY DATABASE

Excludes any empty users or databases from the ARCHIVE
operation. This option works with all types of archives. If you
archive a journal, databases without a journal are excluded.

FILE Names an output archive file.

You can specify this option twice in the same ARCHIVE statement.
If you specify the option twice, Teradata ARC generates two
identical archive files concurrently.

Note: For Windows NT/2000/XP, only one FILE is supported.

Warning: If more than one ARCHIVE statement is specified in a
script, the value for the FILE parameter is different for
each statement. Otherwise, the file created by the second
ARCHIVE statement will overwrite the file created by the
first ARCHIVE statement.

name Name of the output archive file.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
ARCHIVE

Teradata Archive/Recovery Utility Reference 141

Archiving Process

Database SYSUDTLIB is linked with database DBC and is only archived if DBC is archived.
SYSUDTLIB cannot be specified as an individual object in an ARCHIVE statement.

If database DBC is involved in an archive operation, it is always archived first, followed by
database SYSUDTLIB. If additional databases are being archived, they will follow SYSUDTLIB
in alphabetical order.

By default, Teradata ARC counts output sectors and output rows. The row count is the
number of primary data rows archived when you specify the DATA or NO FALLBACK option.
Both counts are included in the output listing.

Archives have these limitations:

• Journal and data (or dictionary) tables cannot be stored on the same archive file.

• When you archive a journal table, the saved subtable portion of the journal is archived. If
you perform two archives without doing a CHECKPOINT WITH SAVE operation in
between, the two archive files are identical.

• If you create an archive when the saved subtable is empty, the archive file contains only
control information used by Teradata ARC.

Archive Messages

During an archive of a Teradata Database, Teradata ARC issues messages in the format shown
below as it archives tables, views, macros, stored procedures, triggers, and permanent journals.
The format of the byte and row counts agree with the format of these counts in the restore or
copy output.

FUNCTION "UDFname" - n,nnn,nnn BYTES, n,nnn,nnn ROWS ARCHIVED
JOURNAL "Journalname" - n,nnn,nnn BYTES ARCHIVED
MACRO "macroname" - ARCHIVED
METHOD "methodname" - ARCHIVED
METHOD "methodname" - n,nnn,nnn BYTES, n,nnn,nnn ROWS ARCHIVED
PROCEDURE "procedurename" - n,nnn,nnn BYTES, n,nnn,nnn ROWS ARCHIVED
TABLE "tablename" - n,nnn,nnn BYTES, n,nnn,nnn ROWS ARCHIVED
TRIGGER "triggername" - ARCHIVED
TYPE "UDTname" - ARCHIVED
VIEW "viewname" - ARCHIVED

When you archive the objects, Teradata ARC issues this message:

DUMP COMPLETED

At the start of each database archive operation or after a system restart, the output listing
shows all offline AMPs.

If an archive file contains a selected partition archive of a table, a message reports the
bounding condition that was used to select the archived partitions and whether the bounding
condition is well-defined.

If online logging is initiated for one or more tables during an archive, online logging
information is displayed for each of the tables in the output listing.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

142 Teradata Archive/Recovery Utility Reference

Archive Results

After each archive operation, review the listing to determine whether any non-fallback tables
were archived while AMPs were offline. If any AMPs were offline during the archive, you
should create a specific AMPs archive for those tables. When the offline AMPs are brought
back online, use this archive to complete the operation.

Teradata ARC does not completely archive data tables that are in the process of being restored
or data tables that are involved in a load operation (by FastLoad or MultiLoad). If tables are
being restored or loaded, Teradata ARC archives only enough data to allow tables to be
restored empty and issues a message.

Archive Limitation

Tables with unresolved referential integrity constraints cannot be archived. An unresolved
constraint occurs when a CREATE TABLE (child) statement references a table (parent) that
does not exist. Use the SQL command CREATE TABLE to create the parent (that is,
referenced) table and resolve these constraints. For more information, refer to the Introduction
to Teradata Warehouse.

Using Keywords with ARCHIVE

The ARCHIVE statement is affected by the following keywords. For information about
keywords that are specific to archiving selected partitions in a PPI table, see “Archiving
Selected Partitions of PPI Tables” on page 146.

AMP Keyword

With Teradata Database, use the AMP=n option to specify up to five AMPs. If a specified
processor is not online when the archive is for a particular database or table, Teradata ARC
does not archive any data associated with that AMP.

This option archives individual processors and is useful for following up an all-AMPs or
cluster archive when the AMPs were offline. Use this option only with the NO FALLBACK
TABLES or JOURNAL TABLES option. Specify the option for (database DBC) ALL to
automatically exclude database DBC.

CLUSTER Keyword

If you use the CLUSTER keyword, maintain a dictionary archive for the same databases,
stored procedures, or tables. Cluster archiving improves archive and recovery performance of
very large tables and simplifies specific AMP restoring of non-fallback tables.

A complete cluster archive can restore all databases, stored procedures, and tables if it
includes:

• A dictionary archive of the databases, tables, or stored procedures

• A set of cluster archives

• A set of specific AMP archives (if you archive non-fallback tables and AMPs were offline
during the cluster archive) so all data is contained in archive files

Create a dictionary archive whenever the tables in the cluster archive might be redefined.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

Teradata Archive/Recovery Utility Reference 143

Although it is necessary to generate a dictionary archive only once if you do not redefine
tables, make a dictionary archive regularly in case an existing dictionary archive is damaged.

If you create a cluster archive over several days and if you redefine a table in that archive, create
an all-AMPs archive of the changed tables. If you do not do this, the table structure may differ
between archive files.

The process when archiving journal tables is to archive the saved subtable created by a
previous checkpoint. Consequently, it is not necessary to use locks on the data tables that are
using the journal table. The Teradata Database places an internal lock on the saved journal
subtable to prevent a concurrent deletion of the subtable.

The following rules govern the CLUSTER keyword:

• The option is allowed only when archiving data tables.

• A dictionary archive must be performed before a cluster archive.

• If any AMPs in the clusters are offline, archive non-fallback tables from those AMPs when
they are brought back online.

• Utility locks are placed and released at the cluster level.

The dictionary archive contains data stored in the dictionary tables of the Teradata Database
for the tables, views, macros, stored procedures, and triggers. Do the following to ensure that
the table data in the cluster archive matches the dictionary definition in the dictionary archive:

• Archive clusters on tables with definitions that never change.

• Create the dictionary archive immediately prior to the cluster archives, without releasing
Teradata ARC locks. Then initiate a set of cluster archive requests covering all AMPs.

You cannot archive database DBC in cluster archive operations. You can, however, specify
DBC (ALL). In this case, database DBC is excluded automatically by Teradata ARC.

RELEASE LOCK Keyword

Warning: Releasing a HUT lock while another Teradata ARC job is running could result in data corruption
and/or unexpected errors from ARCMAIN or the Teradata Database.
This can occur if a HUT lock is explicitly released during an ARC job, or if multiple jobs are
run concurrently on the same object with the same Teradata user, with each job specifying the
RELEASE LOCK option. For example, a database-level archive, with one or more tables
excluded, is run concurrently with a table-level archive of the excluded tables. In this situation,
the RELEASE LOCK for the database-level job will release the table-level locks if the job
completes first.

Use different Teradata users for each archive job when running concurrent archives against the
same objects. This ensures that locks placed by one job are not released by another.

For the purposes of locking, a set of cluster archive jobs, with each job archiving different
clusters, counts as only a single job running against the object. If all concurrent jobs running
on an object archive different sets of clusters, it is acceptable to use the same Teradata user for
each of the cluster archive jobs.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

144 Teradata Archive/Recovery Utility Reference

INDEXES Keyword

Specifying the INDEXES keyword increases the time and media required for an archive. This
option does not apply to journal table archives. The option is ignored for cluster and specific
AMP archives.

The INDEXES keyword usually causes Teradata ARC to archive unique and non-unique
secondary indexes on all data tables. However, if an AMP is offline, Teradata ARC only
archives unique secondary indexes on fallback tables. Therefore, for the INDEXES keyword to
be most effective, do not use it when AMPs are offline.

If the archive applies a group read HUT lock, Teradata ARC writes no indexes to the archive
file.

ABORT Keyword

For cluster archives, Teradata ARC only considers AMPs within the specified clusters. The
ABORT keyword does not affect specific AMP archives.

GROUP Keyword

To avoid the full read HUT lock that Teradata ARC normally places, specify USE GROUP
READ LOCK for a rolling HUT lock. (It is also possible to avoid the full read HUT lock by
initiating an online archive using the ONLINE option during an ALL AMPS archive, or by
using LOGGING ONLINE ARCHIVE ON.)

If you specify the GROUP keyword, the Teradata Database:

1 Applies an access HUT lock on the whole table.

2 Applies a read HUT lock sequentially on each group of rows in the table as it archives
them, then:

• Releases that read HUT lock.

• Applies another read HUT lock on the next group of rows to be archived.

3 After the last group of rows is archived, releases the last group read HUT lock and the
access HUT lock on the table.

Using the GROUP keyword locks out updates to a table for a much shorter time than an
archive operation without the option. The size of the locked group is approximately 64,000
bytes.

A transaction can update a table while the table is being archived under a group read HUT
lock. If an update occurs, the archive might contain some data rows changed by the
transaction and other data rows that were not changed. In this case, the archived copy of the
table is complete only when you use it in conjunction with the after image journal created by
the transaction.

Use a group read HUT lock only for tables with an after image journal. This means that online
backups of database-level objects also require every table in the database have after-journaling
defined. If a table is excluded as part of a database-level GROUP READ LOCK archive, it must
still have an after-journal table defined so ARC can accept the GROUP READ LOCK option.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

Teradata Archive/Recovery Utility Reference 145

If you specify a group read HUT lock for tables without an after image journal, the Teradata
Database does not archive the table, and it prints an error message.

If you do not specify the GROUP keyword and the archive operation references a database, the
Teradata Database locks the database. This HUT lock is released after all data tables for the
database have been archived.

If the ARCHIVE statement specifies the archive of individual data tables, the Teradata
Database locks each table before it is archived and releases the HUT lock only when the
archive of the table is complete. HUT locks are released only if you specify the RELEASE
LOCK keywords.

ONLINE Keyword

The ONLINE keyword initiates an online archive on a table or database. During an online
archive, the system creates and maintains a log for the specified table or a separate log for each
table in the specified database. All changes to a table are captured in its log. Each log of
changed rows is then archived as part of the archive process. When the archive process
completes, the online archive is terminated and the change logs are deleted.

When a table is restored, the table's change log is restored also. The changed rows in the log are
rolled back to the point that existed prior to the start of the archive process. The table is then
rolled back to that same point. All tables within the same transaction in the online archive are
restored to the same point in the transaction.

KEEP LOGGING Keyword

The KEEP LOGGING keyword overrides automatic termination of:

• an ALL AMPs online archive that was initiated with the ONLINE option

• a cluster online archive that was initiated with LOGGING ONLINE ARCHIVE ON

When KEEP LOGGING is used, the online archive process continues after the archive process
completes. Changed rows continue to be logged into the change log. Use this keyword with
caution: online logging continues until it is terminated manually with LOGGING ONLINE
ARCHIVE OFF. If online logging is not terminated, there is a possibility that the logs could fill
all available perm space.

NONEMPTY DATABASE Keywords

Teradata ARC writes no information to tape about empty objects. If there are many empty
users on a system, using these keywords can appreciably reduce the archive time.

The NONEMPTY keyword is only meaningful when used in conjunction with the ALL
option. Using NONEMPTY, without ALL for at least one object, produces an ARC0225
warning message. In this case, the NONEMPTY option is ignored and execution continues.

Teradata ARC uses the ARC_NonEmpty_List macro to determine which databases to archive.
If this macro was not installed or if you do not have the EXECUTE privilege, Teradata ARC
still archives all objects. Thus, if this macro is not installed, the time savings is not realized.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

146 Teradata Archive/Recovery Utility Reference

Archiving Selected Partitions of PPI Tables

It is possible to perform an all-AMPs archive on one or more partitions of a table rather than
performing a full-table backup and restore. This feature is limited to all-AMP archives.
Dictionary, cluster, and journal archives are not supported.

Use selected partitions to archive only a subset of data and avoid archiving data that has
already been backed up. (Minimizing the size of the archive can improve performance.)

Before using this feature, be sure to understand “Potential Data Risks When Archiving/
Restoring Selected Partitions” on page 33.

For procedures and script examples of selecting partitions, see “Archiving Selected Partitions
of PPI Tables” on page 30.

Restrictions on Archiving Selected Partitions

These restrictions apply to archiving selected partitions of a PPI table:

• Cluster, dictionary, and journal archives are not supported.

• It is recommended that tables containing large objects (BLOB and CLOB columns) not be
archived with selected partitions (using PARTITIONS WHERE) because a number of
manual steps are needed to restore the data. Instead of using selected partitions, use a full-
table archive and restore for tables that contain both PPIs and LOBs.

For additional information, see “Potential Data Risks When Archiving/Restoring Selected
Partitions” on page 33 and “Considerations Before Restoring Data” on page 40.

Keywords for Archiving Selected Partitions

To perform an archive of selected partitions, specify a conditional expression in the
PARTITIONS WHERE option in an ARCHIVE script. This conditional expression should
only reference the column(s) that determine the partitioning for the table being archived.

PARTITIONS WHERE Keyword

Use the PARTITIONS WHERE option to specify the conditional expression, which contains a
definition of the rows that you want to archive. To be effective, limit this expression to the
columns that determine the partitioning for the table you want to archive.

These restrictions apply to the use of PARTITIONS WHERE:

• The object is an individual table (not a database).

• The source table has a PARTITIONS BY expression defined.

• The archive is an all-AMP archive (not a dictionary, cluster, or journal archive).

• The INDEXES option is not used.

• If the table belongs to a database that is specified in the ARCHIVE statement, the table is
excluded from the database-level object (with EXCLUDE TABLES) and is individually
specified.

• Any name specified in the conditional expression is within the table being specified.
(Using table aliases and references to databases, tables, or views that are not specified
within the target table result in an error.) It is recommended that the only referenced

Chapter 6: Archive/Recovery Control Language
ARCHIVE

Teradata Archive/Recovery Utility Reference 147

columns in the PARTITIONS WHERE condition be the partitioning columns or system-
derived column PARTITION of the table. References to other columns do not contribute
to partition elimination, and might accidently qualify more partitions than intended.

Examples of ARCHIVE Keywords

This example executes an archive of all the rows in the TransactionHistory table in the
SYSDBA database for the month of July 2002:

ARCHIVE DATA TABLES
(SYSDBA.TransactionHistory)
(PARTITIONS WHERE
(! TransactionDate BETWEEN DATE ‘2002-07-01’ AND DATE ‘2002-07-31’ !))
,
RELEASE LOCK,
FILE=ARCHIVE;

Changes Allowed to a PPI Table

The following changes can be made to a PPI table without affecting or preventing the
restoration of data from an archive of selected partitions:

• Table-level options that are unrelated to semantic integrity, such as FALLBACK protection,
journaling attributes, free space percentage, block size, and others.

• Use of the MODIFY PRIMARY INDEX option, which changes the partitioning expression.

• Changes to table-level CHECK CONSTRAINTS.

• Changes that add, drop, or modify a CHECK CONSTRAINT on a column.

• Secondary indexes may be added or dropped.

Other changes to a PPI table are more significant in that they affect the DBC.TVM.UtilVersion.
You cannot restore archives of selected partitions if the archive UtilVersion does not match the
table UtilVersion. DBC.TVM.UtilVersion is initially set to 1. ALTER TABLE increases the value
of DBC.TVM.UtilVersion to match the table DBC.TVM.Version whenever the following
significant changes occur to the referential integrity of a child table:

• Modification of the columns of a primary index

• Addition or deletion of columns

• Modification of the definition of an existing column

• Addition, deletion, or modification of the referential integrity among tables

When DBC.TVM.UtilVersion is updated for a table, previous archives are invalid for future
restores or copies of selected partitions to that table, but a full table restore or copy is still
valid. For more information, see the Data Dictionary.

Table-Level Exclude Option with ARCHIVE

The table-level exclude object option is allowed in an ARCHIVE statement (and in COPY and
RESTORE statements). This option is only accepted in a database-level object in a DATA
TABLES of all-AMPs or cluster operations. A database-level object that has one or more
excluded tables is a partial database.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

148 Teradata Archive/Recovery Utility Reference

An archive of a partial database contains the dictionary information and the table header row
of the excluded table. However, the actual data rows are not archived. If a partial database
archive is restored, no data rows are restored for the excluded tables.

If a table is excluded, Teradata ARC restores the dictionary information and the table header
row, but leaves the table in restore state. This prevents the table from being accessed by
another application before the table level restore is performed. A table-level restore for the
excluded tables is expected to follow the partial database restore to fully restore a partial
database.

To exclude a table, run a BUILD statement for the excluded tables. The excluded tables
become accessible and are empty; they can then be dropped.

If ALL keyword is specified after the object name, then only fully qualified table names in the
form of databasename.tablename are accepted in the list of EXCLUDE TABLES. Do not use
EXCLUDE TABLES with the following options: - table level object: (db.tb) - DICTIONARY,
JOURNAL, NO FALLBACK - AMP=. ARC0215 will be issued if above condition is detected.

Caution: During a full database-level restore of an archive with excluded tables, the data dictionaries
and the table headers of all tables, including excluded tables, are replaced. As a result, all of the
existing rows in the excluded tables are deleted. To leave an existing excluded table intact
during a RESTORE or COPY operation, use the EXCLUDE TABLES option on the RESTORE
or COPY statement.

You can restore individual tables from a database-level archive with excluded tables. In the
RESTORE statement, individually specify all the tables you want to restore, except the
excluded tables. By omitting the excluded tables, you preserve the data dictionaries and table
headers of the excluded tables. That way you can restore the database from the archive without
altering the excluded tables.

However, you cannot name macros, views, stored procedures, triggers, or UDFs as objects in
the RESTORE statement. Consequently, if you create an archive with excluded tables and you
want to preserve the excluded tables, you cannot recover those objects from the archive.

Table-Level Exclude Errors

The following error messages can occur when you use the table-level exclude object option in
an ARCHIVE statement.

ARC0106: “User excluded table(s) (%s) does/do not belong to database
%s”

One or more tables specified in the EXCLUDE TABLES object option do not belong to the
database object.

This is only a warning. You do not need to take any action; the archival will continue.

ARC0107: “%s is a %s. Not excluded.”

Views, macros, stored procedures, and triggers are not allowed in the EXCLUDE TABLE list.
Only tables are allowed in the EXCLUDE TABLE list. Teradata ARC ignores this entry and
continues the operation.

Remove the entry from the EXCLUDE TABLE list.

Chapter 6: Archive/Recovery Control Language
ARCHIVE

Teradata Archive/Recovery Utility Reference 149

ARC0108: “Invalid table name in EXCLUDE TABLE list: %s.%s”

This error occurs when a table specified in EXCLUDE TABLE list does not exist in the
database. Correct the table name and resubmit the job.

ARC0109: “One or more tables in EXCLUDE TABLE list for (%s) ALL is/
are not valid”

This error occurs when validation of one or more tables in the EXCLUDE TABLE list failed.
The invalid table names displayed prior to this error. Correct the database/table name and
resubmit the job.

ARC0110: “%s is not parent database of %s in EXCLUDE TABLE list”

This error occurs when a table specified in EXCLUDE TABLE list does not belong to any of the
specified parent’s child databases. Correct the database/table name and resubmit the job.

ARC0710: "Duplicate object name has been specified or the table level
object belongs to one of database level objects in the list: %s"

The severity of ARC0710 has been changed to FATAL (12) from WARNING (4).

Do not specify excluded tables in a statement that also contains the database excluding them
(unless you use the PARTITIONS WHERE option to archive selected partitions of PPI tables,
in which excluded tables are allowed). For example:

ARCHIVE DATA TABLES (db) (EXCLUDE TABLES (a)), (db.a), RELEASE LOCK,
FILE=ARCHIVE; /* ARC0710 */

This fatal error resulted from one of the following:

• the specified object is a duplicate of a previous object in the list

• the specified object is a table level object that belongs to one of the database-level objects
in the list

• the ALL option has been specified and one of the child databases is a duplicate of an object
explicitly specified in the list

Remove one of the duplicate names or the table level object and resubmit the script.

ARC1242 “Empty Table restored/copied: %s”

When restoring a table excluded by a user, this warning will be displayed. It normally displays
during archiving for the tables that have been excluded. No data rows were restored or copied.
Only the dictionary definition and the table header row were restored or copied.

This warning indicates that a table-level restore/copy must follow in order to fully restore the
database.

The table is currently in restore state. You can either:

• Complete the partial restore of the database by running a table level restore/copy of the
table, or

• Access the table by running an explicit build. This results in an empty table.

Chapter 6: Archive/Recovery Control Language
BUILD

150 Teradata Archive/Recovery Utility Reference

BUILD

Purpose
The BUILD statement generates:

• Indexes for fallback and non-fallback tables

• Fallback rows for fallback tables

• Journal tables by sorting the change images

Syntax

where

Syntax Element Description

DATA TABLESJOURNAL
TABLESNO FALLBACK
TABLES or NO FALLBACK
TABLE

Keywords specifying the type of table to build.

The default is NO FALLBACK TABLE.

Specify DATA TABLES when building fallback, nonfallback,
or both types of tables from all AMPs. This option normally
follows the restore of a cluster archive.

Specify NO FALLBACK TABLE only when building indexes
for non-fallback tables.

(dbname) Name of a database.

ALL Keyword to indicate the operation affects the named
database and its descendants.

(dbname.tablename) Name of a non-fallback table for which indexes are built.

EXCLUDE Keyword to prevent indexes from being built in specified
databases.

GR01B003

BUILD
DATA TABLES

,

JOURNAL TABLES

NO FALLBACK TABLES

A

;B

(dbname)
ALL

(dbname.tablename)

, B

ALL

, EXCLUDE

A

(dbname1) TO (dbname2)

(dbname) , RELEASE LOCK

, ABORT

NO FALLBACK TABLE

Chapter 6: Archive/Recovery Control Language
BUILD

Teradata Archive/Recovery Utility Reference 151

Access Privileges

The user name specified in the LOGON statement must have one of the following:

• RESTORE privileges on the specified database or table

• Ownership of the database or table

Usage Notes

Teradata ARC processes databases, tables, and stored procedures in alphabetical order.
Because database DBC does not contain non-fallback tables and cannot be restored by
clusters, Teradata ARC does not try to build indexes or fallback data for any table in database
DBC.

A build operation creates unique and non-unique secondary indexes for a specified table. The
build operation also generates the fallback copy of fallback tables if you specify the DATA
TABLES keywords.

Typically, this statement is used after one of the following:

• Specific AMP restore of non-fallback tables

• Cluster archive restoring

• Series of all-AMPs restores that specified the NO BUILD option (usually a restore to a
changed hardware configuration)

Note: To speed the recovery of all AMPs, specify the NO BUILD option of the RESTORE
statement to prevent non-fallback tables from being built after the restore is complete.

If an AMP is offline during a build operation, all unique secondary indexes of non-fallback
tables are left invalidated. As a result, requests may run more slowly when secondary indexes
are used for search and selection. Insert and update operations cannot occur.

(dbname) Name of database excluded from the build operation.

ALL Keyword to indicate the operation affects the named
database and its descendants.

(dbname1) TO (dbname2) List of alphabetically client sorted databases excluded from
the build operation.

The delimiting database names need not identify actual
databases.

Database DBC is not included as part of a range.

RELEASE LOCK Keywords to release utility locks on the specified objects
when the build operation completes successfully.

ABORT Keyword to abort the build operation if an AMP is offline
and if the object being built is either a nonfallback table or is
a database that contains a nonfallback table.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
CHECKPOINT

152 Teradata Archive/Recovery Utility Reference

CHECKPOINT

Purpose
The CHECKPOINT statement places a bookmark in a permanent journal or prepares a
permanent journal for archiving.

Syntax

where

Syntax Element Description

(dbname) Name of the database with the journal table to checkpoint.

ALL Indicates that the operation affects the journals in the named database
and all the descendants.

(dbname.tablename) Name of a specific journal table to checkpoint.

All tables should be distinct within the list. Duplicate tables are ignored.

EXCLUDE Prevents journal tables from being check-pointed.

(dbname) Name of database excluded from the checkpoint operation.

ALL Excludes the named database and its descendants.

(dbname1) TO
(dbname2)

Alphabetic list of client databases.

The delimiting database names need not identify actual databases.

Database DBC is not included as part of a range.

GR01B004

CHECKPOINT

,

A

;C

(dbname)
ALL

(dbname.tablename)

,
B

ALL

, EXCLUDE

A

(dbname)

, NAMED chkptname

C

READ

, WITH SAVE
B

, USE ACCESS LOCK

(dbname1) TO (dbname2)

Chapter 6: Archive/Recovery Control Language
CHECKPOINT

Teradata Archive/Recovery Utility Reference 153

Access Privileges

The user name specified in the LOGON statement must have one of the following:

• CHECKPOINT privileges on the journal table or on the database that contains the journal
table

• Ownership of the database that contains the journal table

Usage Notes

Specifying CHECKPOINT with the SAVE keyword prepares a journal table for archiving.
Teradata ARC writes a checkpoint row to the active journal table. This subtable is then
appended to any existing saved table of the named journal. You can then archive this saved
portion by using the ARCHIVE JOURNAL TABLES statement.

The Teradata Database returns an event number that Teradata ARC assigns to the checkpoint
entry.

WITH SAVE Keywords

Only the saved subtable can be archived.

If a saved subtable for any identified journals exists, Teradata ARC appends the active subtable
to it. Teradata ARC writes the checkpoint record to the active subtable and then moves the
active subtable to the saved subtable.

Without this option, Teradata ARC leaves the active subtable as is after writing a checkpoint
record.

USE LOCK Keywords

USE LOCK specifies the lock level Teradata ARC applies to data tables that contribute rows to
the journal tables on which Teradata ARC is setting checkpoints.

With USE LOCK, request the specified lock level on the data tables for a journal in the object
list. When Teradata ARC obtains the requested lock, it writes the checkpoint and then releases
the lock. Teradata ARC then requests locks for data tables for the next journal table in the
object list. Teradata ARC places journal tables in the object list in alphabetical order by
database name.

WITH SAVE Logically moves the contents of the active subtable of the identified
journals to the saved subtable.

USE ACCESS LOCK
or USE READ LOCK

Applies an access or read lock on data tables that contribute journal rows
to the journal tables on which Teradata ARC is setting checkpoints.

USE READ LOCK is the default.

NAMED References the entry in database recovery activities.

chkptname Name of the database recovery event.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
CHECKPOINT

154 Teradata Archive/Recovery Utility Reference

If you specify an ACCESS LOCK, you can make updates to data tables while you are
generating the checkpoint. If you take a checkpoint with an ACCESS LOCK, any transaction
that has written images to the journal and has not been committed is logically considered to
have started after the checkpoint was taken.

When specifying an ACCESS LOCK, you must also specify the WITH SAVE option.

If you specify a READ LOCK, Teradata ARC suspends all updates to the tables until it writes
the checkpoint record. With READ LOCK, you can identify the transactions included in the
archive.

READ LOCK is the default.

NAMED Keyword

If the chkptname duplicates an existing entry in a journal, you can qualify the entry by the
system assigned event number.

If you do not use chkptname, reference the entry by its event number.

Alpha characters in a checkpoint name are not case sensitive. For example, chkptname ABC is
equal to chkptname abc.

Chapter 6: Archive/Recovery Control Language
COPY

Teradata Archive/Recovery Utility Reference 155

COPY

Purpose
The COPY statement copies a database or table from an archived file to the same or different
Teradata Database from which it was archived.

Use COPY to move data from an archived file back to the Teradata Database. While the target
database must exist, COPY creates a new table if it does not already exist on the target
database. If a COPY of selected partitions is requested, the target table must exist on the target
Teradata Database.

Note: When using COPY, the target database must exist on the target Teradata Database.

Syntax

COPY
DICTIONARY

JOURNAL

NO FALLBACK

C

DATA (dbname)
(dbname.tablename)

CB

, RELEASE LOCK

, NO BUILD , ABORT

nnn

2412D001

, FILE = name ;

, AMP= n

, 5

,

ATABLES
TABLE

, CLUSTERS

, CLUSTER

,

ALL FROM ARCHIVE

,
B

ALL

, EXCLUDE

A

(xdbname)

(xdbname1) TO (xdbname2)

options

4096

=

Chapter 6: Archive/Recovery Control Language
COPY

156 Teradata Archive/Recovery Utility Reference

where

Syntax Element Description

DATA TABLE or DATA
TABLES

Copies data tables.

DICTIONARY TABLE or
DICTIONARY TABLES

Copies dictionary tables.

JOURNAL TABLE or
JOURNAL TABLES

Copies journal tables.

NO FALLBACK TABLE
or NO FALLBACK
TABLES

Copies non-fallback tables to specific AMPs.

ALL FROM ARCHIVE Copies all databases/tables in the given archive file.

EXCLUDE Prevents objects in specified databases from being copied.

(dbname) Name of database to exclude from copy.

ALL Excludes the named database and all descendants.

FROM (odbname)
(odbname .otablename)

NO FALLBACK

,

2412B010

4096

options

(

,

)

NO JOURNAL

WITH JOURNAL TABLE = (jdbname . jtablename)

APPLY TO (adbname . atablename))

REPLACE CREATOR
,

EXCLUDE TABLES (xtablename)

xtablename . xtablename)

PARTITIONS WHERE (!conditional expression!)

LOG WHERE (!conditional expression!)

ALL PARTITIONS

QUALIFIED PARTITIONS

ERRORDB edbname

ERRORTABLES etablename
edbname .etablename

Chapter 6: Archive/Recovery Control Language
COPY

Teradata Archive/Recovery Utility Reference 157

(xdbname1) TO
(xdbname2)

Alphabetical list of client databases to exclude from the copy.

The delimiting database names need not identify actual databases.

Database DBC is not part of a range.

(dbname) or
(dbname.tablename)

Name of the target object.

Teradata ARC replaces the target object with the object from the
archive.

FROM Names the object in the archive different from the target object.

NO FALLBACK Copies fallback tables into non-fallback tables. If the archived table is
already non-fallback, this option has no effect.

REPLACE CREATOR Replaces the LastAlterUID, creator name, and Creator ID of the tables
in the target database with the user ID and the current user name, i.e.,
the user name specified in the LOGON command.

NO JOURNAL Copies all tables with journaling disabled, whether journaled in the
archive or not.

WITH JOURNAL
TABLE

Specifies that a copied database has journaling for the specified
database and journal table.

APPLY TO Identifies the tables in the target system where the change images apply.

NO BUILD Prevents the Fallback and Secondary Index rows from being created.

If NO BUILD is requested when restoring database DBC, the request is
ignored.

If the NO BUILD keywords are used during a RESTORE statement, a
separate BUILD statement must be run for all databases and/or tables
that were restored. The tables will not be accessible until a BUILD
statement is run.

ABORT Aborts the copy operation if an AMP to which a non-fallback or journal
table to restore is offline.

This option affects only an all-AMPs copy.

RELEASE LOCK Releases client utility locks when the copy operation completes.

FILE Copies a file.

name Name of the file that contains the archive to copy.

EXCLUDE TABLE or
EXCLUDE TABLES

Prevents individual tables in the listed database from being copied.

(xtablename) Name of an individual table in the designated database to exclude.
Multiple tables are separated by commas.

(xdbname.xtablename) List of fully qualified tables (i.e., prefixed by database name) to exclude.

PARTITIONS WHERE Specifies the conditional expression for partition-level operations.

(!conditional expression!) The conditional expression for specifying selected partitions.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
COPY

158 Teradata Archive/Recovery Utility Reference

Access Privileges

You must have RESTORE access privileges for the target database or table to use the COPY
statement. The target database must also exist before you make the copy.

If you copy a single table that did not exist in the destination database before the copy, you
must have CREATE TABLE and RESTORE DATABASE access rights for the target database.

Usage Notes

Do not use database DBC as the target database name in a COPY statement. You can use DBC
as the source database in a COPY FROM statement, but specify a target database name that is
different than DBC. This allows you to copy DBC from a source system to a different database
on a target system. When used as the source database in a COPY FROM statement, database
DBC is not linked to database SYSUDTLIB. Therefore, only database DBC is copied.

Do not use database SYSUDTLIB as the target database name in a COPY statement. You can
use SYSUDTLIB as the source database in a COPY FROM statement, but specify a target
database name that is different than SYSUDTLIB. This allows you to copy SYSUDTLIB from a
source system to a different database on a target system. When used as the source database in a
COPY FROM statement, database SYSUDTLIB is not linked to database DBC. Therefore, only
database SYSUDTLIB is copied.

Teradata ARC supports duplicate rows in a copy operation. However, if a restart occurs during
the copy of a table with duplicate rows, the duplicate rows involved in the restart may be
removed.

When restoring a cluster archive to a reconfigured system, run the cluster archives serially in
sequence. If this restore scenario is detected by ARCMAIN, then the NO BUILD option is
automatically enabled, if not specified, and an explicit BUILD command must be run after all
restore jobs are completed.

The COPY statement moves an archive copy of a database or table to a new environment.
Copy options let you rename archive databases or create tables in existing databases. The table
does not have to exist in the database it is being copied into. However, because the Teradata

LOG WHERE Specifies the rows that are logged to an error table for manual insertion
and deletion.

(!conditional expression!) The conditional expression for specifying rows to log to the error table
when copying selected partitions.

ALL PARTITIONS Restores all archived partitions for an archived PPI object. See “ALL
PARTITIONS Keyword” on page 166 for conditions that must be met.

QUALIFIED
PARTITIONS

Copies the same partitions specified in a previous selected-partition
copy.

ERRORDB and
ERRORTABLES

Specifies the location of the error log for partition-level operations.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
COPY

Teradata Archive/Recovery Utility Reference 159

Database internal table identifier is different for the new table, access rights for the table are
not copied with the data.

Do not copy a table name generated in a character set different from your default character set
or the character set specified in your Teradata ARC invocation. For example, a table name
from a multibyte character set archive cannot be copied into a single-byte character set
database.

To work around this restriction:

1 ANALYZE the archive tape with the HEX runtime option specified.

2 Result: The table names are displayed in hexadecimal format (e.g., X’
C2C9C72A750A3AC5E4C5E4C36DD9D6E6)

3 Run the COPY table statements using the hexadecimal table names.

To copy more than one table or database with one COPY statement, separate the names with
commas. Because Teradata ARC reads the archive data for each COPY statement it processes,
one COPY statement yields better performance than multiple COPY statements.

Example

In the next example, the first table is copied to a different table name, and the next two tables
are copied with the same table name.

COPY DATA TABLES (test.test1) (FROM (oldtest.test1))
,(test2.test)
,(test3.test)
,RELEASE LOCK
,FILE = ARCHIVE;

If the configuration of the source and target platforms are different, you can copy cluster
archives only to all AMPs or specific AMPs.

Use these options with all types of copy operations:

• FROM (dbname.tablename)

• RELEASE LOCK

• NO BUILD

• CLUSTER = nnn

• AMP = n

• FILE = name

These options are suitable only for data table copy operations, and only with dictionary and
data table copies:

• WITH JOURNAL TABLE (dbname.tablename)

• NO FALLBACK

• NO JOURNAL

Journal copy options are not supported after the target system is reconfigured. Journal table
copy options define target (receiving) tables for change image journaling.

Chapter 6: Archive/Recovery Control Language
COPY

160 Teradata Archive/Recovery Utility Reference

Teradata ARC uses the journal table copy options to:

• Select the set of journal images from an archive to copy.

• Name the tables in the receiving system to which the images apply during rollforward or
rollback operations.

When you specify NO BUILD, Teradata ARC leaves the restored journal in a prebuild state.
Teradata ARC does not allow roll operations on journal tables in this state, and generates an
error message if you attempt to roll this journal back or forward.

If you copy data tables into a database that does not already have tables with those names,
Teradata ARC creates the required tables. This is true only for data tables. Journal tables can
never be created by a copy operation. They must exist in the receiving database. Similarly, you
cannot create receiving databases with a COPY operation.

The COPY function preserves table names without converting them to upper case and returns
these table names in their original format.

Database DBC.DBCAssociation

Teradata ARC creates a row in database DBC.DBCAssociation table for each dictionary row
Teradata ARC copies successfully. This row contains columns with information that associate
the copied table back to its originating Teradata Database.

The row in database DBC.DBCAssociation also contains columns that link it to the TVM
table, which associates the row to its receiving table, and to the DBase table, which associates
the row to its receiving database.

Teradata ARC also creates a column in each row of database DBC.DBCAssociation that links
them to the RCEvent table. This link is the restore event number. For successful copy
operations, the EventType in the RCEvent table is COPY.

Locks

Copy places exclusive client utility locks during its operations. If you copy an entire database
from a full database archive, the entire database is locked for the duration of that operation. If
you copy a table level archive or a single table, Teradata ARC locks only that table.

Views, Macros, Stored Procedures, Triggers, UDFs, and UDTs

Copying a full database archive is the same as a restore operation. Teradata ARC drops all
existing tables, views, macros, stored procedures, triggers, UDFs, UDTs, and dictionary
information in the receiving system. The data in the archive is then copied to the receiving
database.

However, triggers cannot be copied with the COPY statement. If a trigger is defined in a
database, then <trigger> NOT COPIED is displayed when the COPY statement is executed.
This is not an error or warning. Triggers must be manually recreated via SQL.

You cannot copy one or more stored procedures from one database to another using the
COPY statement. They can only be copied as part of a full database.

If your views, stored procedures, and macros have embedded references to databases and
objects that are not in the receiving environment, those views, stored procedures, and macros

Chapter 6: Archive/Recovery Control Language
COPY

Teradata Archive/Recovery Utility Reference 161

will not work. To make any such views, stored procedures, and macros work, recreate or copy
the references to which they refer into the receiving database.

If your views, stored procedures, and macros have embedded references to databases and
objects that are in the receiving environment, they will work correctly.

Note: Fully qualify all table, stored procedure, and view names in a macro and all table names
in a view. If you do not, you may receive an error. When you execute a COPY statement,
partial names are fully qualified to the default database name. In some cases, this may be the
name of the old database.

Referential Integrity

After an all-AMPs copy, copied tables do not have referential constraints. First, referential
constraints are not copied into the dictionary definition tables, database DBC.ReferencedTbls
and database DBC.ReferencingTbls, for either a referenced (parent) or referencing (child)
table copied into a Teradata Database. Moreover, all referential index descriptors are deleted
from the archived table header before it is inserted into the copied table.

Reference constraints remain, however, on any table for which the copied table is a referenced
table (a parent table) or any table the copied table (as a child table) references. Hence, when
either a referenced or a referencing table is copied, the reference may be marked in the
dictionary definition tables as inconsistent.

While a table is marked as inconsistent with respect to referential integrity, no updates, inserts
or deletes are permitted. The table is fully usable only when the inconsistencies are resolved.

• Use an ALTER TABLE DROP INCONSISTENT REFERENCES statement to drop
inconsistent references.

• Use the ALTER TABLE ADD CONSTRAINT FOREIGN KEY REFERENCES to add
referential constraints to the copied table.

For an all-AMPs copy, the REVALIDATE REFERENCES FOR statement is not applicable
with respect to the COPY statement.

Using Keywords with COPY

The COPY statement is affected by the following keywords. For information about the
keywords that apply to copying partitioned data, see “Restores of Selected Partitions” on
page 195.

NO FALLBACK Keywords

This option applies only during a copy of a dictionary archive or an all-AMPs archive.

If a fallback table has permanent journaling on the archive, the table has dual journaling of its
non-fallback rows after the copy when Teradata ARC applies the NO FALLBACK option
(unless NO JOURNAL is specified).

FROM Keyword

The object specified in the FROM keyword identifies the archive object. This option applies
only during a copy of a dictionary archive or an all-AMPs archive.

Chapter 6: Archive/Recovery Control Language
COPY

162 Teradata Archive/Recovery Utility Reference

Journal enabled tables in the original archive carry their journaling forward to the copy unless
you specify the NO JOURNAL keywords.

The NO JOURNAL keywords apply to all tables in a database when you copy a database. This
option has no effect on a target database’s journaling.

If the object you specify in the FROM option is a table, Teradata ARC copies only that table.

If the object you specify in the FROM option is a database, one of the following occurs:

• If the receiving object is a table, then Teradata ARC searches through the archived database
for the named table and copies the table.

• If the receiving object is a database, then Teradata ARC copies the entire database into the
receiving database.

Although you cannot copy into database DBC, you can specify database DBC as the object of
the FROM option. In other words, you can copy database DBC into another database.

Similarly, you cannot copy into database SYSUDTLIB, but you can specify database
SYSUDTLIB as the object of the FROM option. That is, you can copy database SYSUDTLIB
into another database.

If you specify both the FROM and EXCLUDE TABLES options in the same statement, specify
the FROM clause first. Then ARC can generate a default source database name for the
excluded tables if a database name is not specified in the EXCLUDE TABLES clause.

WITH JOURNAL TABLE Keywords

This option only applies during a copy of a dictionary archive or an all-AMPs archive. To use
this option, you must have INSERT access rights to the referenced journal table.The source
table must have a journal or this option has no effect.

If you are copying a database, the journaling you specify with this option applies only to those
tables that had journaling enabled in the original database. This option has no effect on a
receiving database’s default journaling.

If the database has default journaling specified, then Teradata ARC uses those options. This
option only overrides the journal table in the receiving database, and is only valid if the
originating table had journaling enabled.

If you want to carry journaling from the original table forward, but you do not specify the
WITH JOURNAL TABLE option, Teradata ARC uses one of the following:

• The default journal of the receiving database if the table is to be created. If there is no
default journal, Teradata ARC rejects the copy.

• The journal you specified in the WITH JOURNAL option when you created the table.

• The journal of the table being replaced if the table already exists.

APPLY TO Keywords

This option is required when copying journal images. Restore access rights to each table you
want to specify are necessary. You can apply journal images to as many as 4096 tables,
however, all of the table names in the APPLY TO option cannot exceed 8 KB.

Chapter 6: Archive/Recovery Control Language
COPY

Teradata Archive/Recovery Utility Reference 163

When you copy a journal table, Teradata ARC restores only checkpoint rows and those rows
that apply to the receiving environment. The tables to which those images apply and their
journaling options must have already been copied. Thus, to perform a COPY JOURNAL with
an APPLY TO option, the appropriate COPY DATA TABLE statement must have been issued
at least once prior to issuing a COPY JOURNAL statement to establish the source/target
tableid mapping in database DBC.DBCAssociation table. Teradata ARC copies only those
images that have the correct table structure version (as defined by the originating table).

If you apply a journal image for the source table to more than one target table, Teradata ARC
writes two occurrences of the journal image into the restored journal.

CLUSTER Keyword

This option is valid only if the source archive is a cluster archive and the copy is to the identical
Teradata Database. The option is useful in restoring or copying a dropped table to a different
database on the same Teradata Database.

AMP Keyword

With Teradata Database, use the AMP=n option to specify up to five AMPs.

Only the NO FALLBACK TABLE or JOURNAL TABLE options are applicable. It is useful
following all-AMPs copies where all AMPs were not available at the time of the copy operation
and non-fallback or journal receiving tables were involved.

NO BUILD Keywords

Use the NO BUILD keywords for all archives except the last one. Omit the NO BUILD option
for the last archive, so that Teradata ARC can:

• Build indexes for tables.

• Sort change images for journal tables.

If the NO BUILD keywords are used during a RESTORE or COPY statement, run a separate
BUILD statement for all databases and/or tables that were restored. The tables are not
accessible until a BUILD statement is run.

ALL FROM ARCHIVE Keywords

The ALL FROM ARCHIVE keywords take the place of the database and/or table names that
are normally specified after the DATA, DICTIONARY, JOURNAL, or NO FALLBACK
TABLES keywords.

Do not specify any other database or table names to be copied when using ALL FROM
ARCHIVE. Exercise caution when using this option, as all databases and tables in the given
archive file will be copied, and any existing databases or tables will be overwritten.

CATALOG and Fastpath are not supported while using ALL FROM ARCHIVE. If CATALOG
(or Fastpath) is enabled when ALL FROM ARCHIVE is specified, it will be disabled and a
warning message will be given.

ALL FROM ARCHIVE cannot be used to copy database DBC, and database DBC must be
excluded by the user if it is present in the archive being copied.

Chapter 6: Archive/Recovery Control Language
COPY

164 Teradata Archive/Recovery Utility Reference

The COPY statement supports the EXCLUDE option; the syntax and function of the option is
identical to the RESTORE version of EXCLUDE. Unlike RESTORE, COPY only supports the
EXCLUDE option when using ALL FROM ARCHIVE.

The FROM, APPLY TO, and WITH JOURNAL TABLE object options are not allowed when
using ALL FROM ARCHIVE.

EXCLUDE TABLES Keyword

Use the EXCLUDE TABLES option to specify one or more tables to skip during a database-
level COPY. Teradata ARC does not copy any dictionary or data for the specified tables. If any
of the tables already exist in the target database, they are unaffected by the COPY operation.

Also specify the EXCLUDE TABLES option to retain an existing table during a database-level
COPY if that table was not archived (or if it was excluded during an ARCHIVE). If you fail to
specify the EXCLUDE TABLES option, the table will be dropped and replaced with the data (if
any) stored in the archive.

If you specify both the FROM and EXCLUDE TABLES options in the same statement, specify
the FROM clause first. Then ARC can generate a default source database name for the
excluded tables if a database name is not specified in the EXCLUDE TABLES clause.

Copying Partitioned Data

You can copy selected partitions of PPI tables, meaning that you can back up of one or more
partitions of a table so you can archive, restore, and copy only a subset of data in a table.

Before attempting to copy selected partitions, read “Potential Data Risks When Archiving/
Restoring Selected Partitions” on page 33.

Restrictions on Copying Partitioned Data

Normally, the table you want to copy does not need to exist in the target database. However, if
you are going to copy selected partitions to the table, the table does need to exist in the target
database. Additionally, the target table must be a full table and not just consist of selected
partitions.

Copying selected partitions is not allowed to a table that has undergone any of the following
major DDL changes:

• Changing primary index columns

• Changing from PPI to NPPI, or visa versa

• Adding or changing referential integrity constraints

Other restrictions exist for archiving selected partitions. See “Restrictions on Archiving
Selected Partitions” on page 146.

Keywords for Copying Selected Partitions

The options available for copying selected partitions include:

• PARTITIONS WHERE

• LOG WHERE

Chapter 6: Archive/Recovery Control Language
COPY

Teradata Archive/Recovery Utility Reference 165

• ERRORDB/ERRORTABLES

• ALL PARTITIONS

• QUALIFIED PARTITIONS

PARTITIONS WHERE Keyword

Use the PARTITIONS WHERE option to specify the conditional expression for selected
partitions. The expression must contain the definition of the partitions that you want to copy.
The following restrictions apply to the use of PARTITIONS WHERE:

• The object is an individual table (not a database).

• The source and target tables have a PARTITIONS BY expression defined.

• The copy is an all-AMP copy (not a dictionary, cluster, or journal copy).

• If the table belongs to a database that is specified in the COPY statement, the table is
excluded from the database-level object (with EXCLUDE TABLES) and is individually
specified.

• Any name specified in the conditional expression is within the table being specified.
(Using table aliases and references to databases, tables, or views that are not specified
within the target table result in an error.) It is recommended that the only referenced
columns in the conditional expression be the partitioning columns or system-derived
column PARTITION of the table. References to other columns does not contribute to
partition elimination, and might accidently qualify more partitions than intended.

LOG WHERE Keyword

If the PARTITIONS WHERE option does not capture all the rows that need to be copied, use
the LOG WHERE option. This option inserts into a Teradata-generated error table archived
rows that both fall outside the partitions specified by the PARTITIONS WHERE conditional
expression and match the LOG WHERE conditional expression.

Use the option only if PARTITIONS WHERE is also specified for the object. If LOG WHERE
is omitted, the default is to log to the error table only the rows in the partitions being restored
that have errors.

ERRORDB/ERRORTABLES Keyword

The ERRORDB and ERRORTABLES options are mutually exclusive; specify only one option
for an object. Also, specify either the PARTITIONS WHERE or ALL PARTITIONS option
when using either ERRORDB or ERRORTABLES.

• If you specify ERRORTABLES without a database name, or if neither ERRORTABLES nor
ERRORDB is specified, the error table is created in the same database as the base table.

• If you do not specify ERRORTABLES, by default the naming convention for the error table
is the name of the base table plus the prefix “RS_”. For example, the error table for a table
named “DataTable” is “RS_DataTable.” Names are truncated to 30 bytes.

Chapter 6: Archive/Recovery Control Language
COPY

166 Teradata Archive/Recovery Utility Reference

ALL PARTITIONS Keyword

Use the ALL PARTITIONS option to copy all of the archived partitions in a table. These
restrictions apply:

• The object being copied is an individual table, or the ALL FROM ARCHIVE option is
specified.

• The source and target tables have a PARTITIONS BY expression defined.

• The copy is an all-AMP copy rather than a dictionary, cluster, or journal copy.

• PARTITIONS WHERE is not specified for the object.

• The partition bounding condition must have been well-defined when the backup was
performed. A bounding condition is well-defined if the PARTITION BY expression on the
source table consists of a single RANGE_N function, and if the specified range does not
include NO RANGE or UNKNOWN. (Use ANALYZE to determine whether a selected
partition is well-defined.)

If a conditional expression is not well-defined, Teradata ARC issues an error, and you must
use PARTITIONS WHERE for the restore operation rather than ALL PARTITIONS.

QUALIFIED PARTITIONS Keyword

Use this option only to copy a specific-AMP archive after copying selected partitions from an
all-AMP archive that was done while an AMP is down.

Alternate Character Set Support

Teradata ARC runs on IBM mainframes, which use the kanjiEBCDIC character set. However,
object names created in kanji character sets (UNIX or MS/DOS platforms) other than
EBCDIC can be copied from archive, but not translated into internal RDBMS format names.

The reason for this is that “hybrid” EBCDIC and kanjiEUC, or EBCDIC and kanjiShiftJIS
single byte and multibyte characters cannot be translated into internal RDBMS format. If the
object name is in internal RDBMS format, the Teradata Database can translate it into an
external client format name.

Note: Hybrid object names result when archiving an object created in the KANJIEUC or
KANJISJIS character set from a KANJIEBCDIC mainframe client and the hexadecimal
representation of the object being archived is not used. In such a circumstance, the Teradata
Database cannot properly translate the character set and produces a hybrid object name
composed of single byte characters from the EBCDIC character set and multibyte characters
from the creating character set (UNIX or DOS/V). The hybrid object name cannot be
understood by the Teradata Database. Correct this in one of two ways:

• If you know the internal hexadecimal object name, in format (’......’XN), use it. This is the
preferred method.

The ARCMAIN program can use Teradata Database to translate the internal hexadecimal
format names to external hexadecimal format for the purpose of searching the archive file.

Chapter 6: Archive/Recovery Control Language
COPY

Teradata Archive/Recovery Utility Reference 167

• If you do not know the internal hexadecimal object name:

a Run the ANALYZE statement on the archive tape without making a connection to the
Teradata Database by means of the LOGON statement.

b The ANALYZE statement identifies the database in a “hybrid” format of the name.

c Use the “hybrid” format of the name in the “FROM” syntax to specify that the object
name in the archive file is different from the name of the target object name.

Chapter 6: Archive/Recovery Control Language
DELETE DATABASE

168 Teradata Archive/Recovery Utility Reference

DELETE DATABASE

Purpose
The DELETE DATABASE statement deletes the contents of one or more databases, including
all data tables, views, macros, stored procedures, and triggers.

To drop a journal table contents and structure, use the SQL statement MODIFY DATABASE
with the DROP JOURNAL TABLE option. Refer to SQL Reference: Statement and Transaction
Processing for more information.

Syntax

where

Usage Notes

To delete a database, the user name specified in the LOGON statement must have DROP
privilege on the database to be deleted.

Syntax Element Description

(dbname) Name of the database.

ALL Indicates the operation affects the named database and its
descendants.

EXCLUDE Protects the named database from deletion.

(dbname) Name of the database to protect from deletion.

ALL Indicates the operation protects the named database and its
descendants.

(dbname1) TO (dbname2) Alphabetical list of databases to protect from deletion.

The delimiting database names need not identify actual databases.

Database DBC is not part of a range.

GR01B007

DELETE DATABASE

,

A

;

(dbname)
ALL

ALL

, EXCLUDE

A

(dbname)

,

(dbname1) TO (dbname2)

Chapter 6: Archive/Recovery Control Language
DELETE DATABASE

Teradata Archive/Recovery Utility Reference 169

The DELETE DATABASE statement is useful if you need to delete a database that is partially
restored but unusable. Executing the statement deletes all access rights for tables, views,
macros, stored procedures, triggers, and UDFs in the database. To release the locks that
remain after the restore, execute the RELEASE LOCK statement before you enter the DELETE
DATABASE statement.

Deleting All Objects from the Teradata Database

In order to restore database DBC, no objects can exist in any database outside of DBC. Delete
all objects outside of DBC prior to restoring DBC by using this command:

DELETE DATABASE (DBC) ALL, EXCLUDE (DBC);

To drop permanent journal tables, use either the MODIFY USER or MODIFY DATABASE
statement (See the MODIFY DATABASE/USER description in SQL Reference: Data Definition
Statements.)

Enter the command exactly as shown above. You do not need to specify SYSUDTLIB as an
object of this DELETE DATABASE statement because ARC removes the usual link between
SYSUDTLIB and DBC so that only DBC is excluded from the delete operation. SYSUDTLIB is
deleted so that DBC can be restored, however, it is deleted after all other databases have been
deleted. This allows any objects that have definitions based on UDTs stored in SYSUDTLIB to
be deleted before the UDTs themselves are deleted.

Chapter 6: Archive/Recovery Control Language
DELETE JOURNAL

170 Teradata Archive/Recovery Utility Reference

DELETE JOURNAL

Purpose
The DELETE JOURNAL statement removes a journal subtable from the Teradata Database.

Syntax

where

Syntax Element Description

SAVED Deletes the portion of the current journal that has previously been
saved with a CHECKPOINT JOURNAL statement.

RESTORED Deletes the portion of a journal table that was restored from archive
for use in a recovery activity.

(dbname) Name of the database that contains the journal to delete.

ALL Indicates the operation affects the named database and its
descendants.

(dbname.tablename) Journal table within the named database to delete. All tables should
be distinct within the list. Duplicate tables are ignored.

EXCLUDE Protects the named journal tables from deletion.

(dbname) Name of the protected journal table.

ALL Keyword to protect the named journal and all its descendants.

(dbname1) TO (dbname2) Alphabetical list of databases to be protected from deletion.

The delimiting database names need not identify actual databases.

Database DBC is not part of a range.

GR01B006

DELETE

,

A

;

(dbname)
ALL

(dbname.tablename)

,

ALL

, EXCLUDE

A

(dbname)

JOURNALSAVED
RESTORED

(dbname1) TO (dbname2)

Chapter 6: Archive/Recovery Control Language
DELETE JOURNAL

Teradata Archive/Recovery Utility Reference 171

Access Privileges

To delete a journal table, the user name specified in the LOGON statement must have one of
the following:

• The RESTORE privilege on the database or journal table being deleted

• Ownership of the database that contains the journal table

Usage Notes

You cannot use the journal archive to recover all AMPs when all of the following conditions
exist:

• The checkpoint with an access lock creates a saved journal.

• The journal is not a dual journal.

• AMPs are offline.

Because transactions between the all-AMPs archive and the single-AMP archive may not be
consistent, you cannot delete a saved journal with an AMP offline that has no dual journal.

Chapter 6: Archive/Recovery Control Language
ENABLE DATA EXTENSION

172 Teradata Archive/Recovery Utility Reference

ENABLE DATA EXTENSION

Purpose
The ENABLE DATA EXTENSION statement loads an extension module that allows archive
data to be processed (for example, encrypted). ARC processes the data before sending it to the
output media.

Syntax

where

Usage Notes

Note: This statement is valid only on Windows platforms.

Data extensions affect the processing of one or more ARC statements and must be specified
before the ARC statement so that the data extension will be active by the time processing of
the ARC statement begins. The data extension determines which ARC statements will be
affected.

The modulename and PARM elements are both required when specifying ENABLE DATA
EXTENSION because they specify which data extension is used, and the parameters that are
applied to that data extension. After a data extension is enabled, it remains active until the end
of the archive operation.

Currently, the encryption data extension is supported. The data encryption module is used
during an archive operation to encrypt the data read from the Teradata Database before the
data is stored in the archive file. The encryption data extension is currently provided by

2412A027

,ENABLE DATA EXTENSION MODULE = ' modulename ,' PARM = ' parameters ' ;

Syntax Element Description

modulename File name of the extension module to load.

The file extension for the file name is optional. If the extension is not
specified, the correct shared library extension for the platform is
added (for example, .dll for Windows).

parameters Parameters that are required for the module.

Chapter 6: Archive/Recovery Control Language
ENABLE DATA EXTENSION

Teradata Archive/Recovery Utility Reference 173

Protegrity. The Protegrity data encryption module, pepbar.plm, supports the AES128,
AES256, and PANAMA data encryption algorithms.

When data in an encrypted archive file is restored, copied, or analyzed, the data encryption
module and algorithm that was used to originally encrypt the data is automatically loaded by
ARC to decrypt the data after it is read from the archive file. The data can then be processed as
unencrypted data.

To enable the Protegrity data encryption module using the AES 256-bit algorithm, specify:

ENABLE DATA EXTENSION, MODULE='pepbar.plm', PARM='ALGORITHM=AES256';

It is also possible to specify the Protegrity data encryption module by using ENABLE
ENCRYPTION, a shorthand method for specifying a data encryption extension. For more
information about data encryption extensions, see “ENABLE ENCRYPTION” on page 174.

Chapter 6: Archive/Recovery Control Language
ENABLE ENCRYPTION

174 Teradata Archive/Recovery Utility Reference

ENABLE ENCRYPTION

Purpose
The ENABLE ENCRYPTION statement loads a module that allows archive data to be
encrypted before sending it to the output media.

Syntax

where

Usage Notes

Note: This statement is valid only on Windows platforms.

Data extensions affect the processing of one or more ARC statements and must be specified
before the ARC statement so that the data extension will be active by the time processing of
the ARC statement begins. The data extension determines which ARC statements will be
affected.

ENABLE ENCRYPTION is a shorthand method for specifying a data encryption extension.
After a data encryption extension is enabled, it remains active until the end of the archive
operation.

Data encryption modules are used during archive operations to encrypt the data read from
the Teradata Database before the data is stored in the archive file.

2412A028

,

ENABLE ENCRYPTION

MODULE = ' modulename ,' ALGORITHM = ' algoname '

;

Syntax Element Description

modulename [Optional] File name of the encryption extension module to load. If
the name is not specified, the Protegrity encryption module,
pepbar.plm, is used.

The file extension for the file name is optional. If the extension is not
specified, the correct shared library extension for the platform is
added (for example, .dll for Windows).

algoname [Optional] The algorithm supported by the encryption module. If
the algorithm is not specified, a default of AES128 is used.

Chapter 6: Archive/Recovery Control Language
ENABLE ENCRYPTION

Teradata Archive/Recovery Utility Reference 175

The encryption data extension is currently provided by Protegrity. The Protegrity data
encryption module, 'pepbar.plm', supports the AES128, AES256, and PANAMA data
encryption algorithms.

When data in an encrypted archive file is restored, copied, or analyzed, the data encryption
module and algorithm that was used to originally encrypt the data is automatically loaded by
ARC to decrypt the data after it is read from the archive file. The data can then be processed as
unencrypted data.

Example

ENABLE ENCRYPTION;

In this code example, the pepbar.plm Protegrity encryption module and AES128 encryption
algorithm are used because they are the defaults.

Example

ENABLE ENCRYPTION, MODULE='pepbar.plm';

This code example specifies the Protegrity encryption module, pepbar.plm, and uses the
default AES128 encryption algorithm.

Example

ENABLE ENCRYPTION, ALGORITHM='AES256';

This code example specifies the AES256 encryption algorithm, and uses the default Protegrity
encryption module, pepbar.plm.

Example

ENABLE ENCRYPTION, MODULE='pepbar.plm', ALGORITHM='PANAMA';

This code example specifies the PANAMA encryption algorithm and the Protegrity
encryption module, pepbar.plm.

Note: Use the complete name, pepbar.plm, when specifying the Protegrity data encryption
module. Specifying MODULE='pepbar' without the file extension generates an invalid
module name for the Protegrity data encryption module because the default file extension is
applied to pepbar (for example, dll).

For documentation relating to the Protegrity module, go to http://www.protegrity.com/
solutioncenter.html. The Defiance BAR Encryption Administration Guide:

• Summarizes the Defiance BAR Encryption components

• Describes installation and configuration of Defiance BAR Encryption on Teradata BAR
servers in a Windows environment

• Describes the Defiance BAR Encryption activation steps

http://www.protegrity.com/solutioncenter.html
http://www.protegrity.com/solutioncenter.html

Chapter 6: Archive/Recovery Control Language
LOGDATA

176 Teradata Archive/Recovery Utility Reference

LOGDATA

Purpose
This statement specifies any additional logon or authentication data that is required by an
extended security mechanism.

Syntax

Usage Notes

The format of data in the LOGDATA statement varies, depending on the logon mechanism
being used. However, to take effect, the LOGDATA statement must be specified (with a
LOGMECH statement) before the LOGON statement.

The data that is required by the logon mechanism is defined as logon-data, as seen in the
syntax diagram above. This logon-data must be valid for all of the Teradata ARC sessions that
will be logging on. For most logon mechanisms, logon-data is case-sensitive, and it must be
enclosed in double quotes if it contains any whitespace characters or non-alphanumeric
characters.

For more information about extended security mechanisms and the LOGDATA statement, see
Teradata Call-Level Interface Version 2 Reference for Network-Attached Systems.

2412A023

LOGDATA "logon-data" ;

.

Chapter 6: Archive/Recovery Control Language
LOGGING ONLINE ARCHIVE OFF

Teradata Archive/Recovery Utility Reference 177

LOGGING ONLINE ARCHIVE OFF

Purpose
LOGGING ONLINE ARCHIVE OFF ends the online archive process.

Syntax

where

Usage Notes

An online archive is a process in which rows are archived from a table at the same time update,
insert, or delete operations on the table are taking place. When an online archive is initiated
on a table or a database, Teradata ARC creates a log for the specified table or a separate log for
each table in the specified database. LOGGING ONLINE ARCHIVE OFF ends the online

Syntax Element Description

database Indicates the database that is included in online archive logging.

ALL [Optional] Indicates that the specified database and all of its child
databases are included in the statement.

databasename.tablename Indicates the table and database that is included in online archive
logging.

EXCLUDE [Optional] Specifies the databases that are excluded from the
statement.

OVERRIDE [Optional] Allows online archive logging to be stopped by someone
other than the user who initiates the process.

2412A031

CB
,

ALL

, EXCLUDE

(database1)-TO-(database2)

C

, OVERRIDE

LOGGING ONLINE ARCHIVE OFF FOR A

BA

,

ALL
(databasename.tablename)

(databasename)

(databasename)

;

Chapter 6: Archive/Recovery Control Language
LOGGING ONLINE ARCHIVE OFF

178 Teradata Archive/Recovery Utility Reference

archive. The log, which contains all changes to the table, is archived as a part of the archive
process. When the table is restored or copied, the changes recorded in the table’s log are used
to roll back the changes in the table. In other words, the table is rolled back to the point that
was established when online archive logging was started on that table.

LOGGING ONLINE ARCHIVE OFF is used after the archive process has completed. The
statement explicitly ends online archive logging on the tables and databases that were just
archived. When the online archive logging process is terminated, the logging of changed rows
is stopped, and the log is deleted.

If the online archive logging process is not terminated on a table after the table has been
archived, logging continues, consuming system resources such as CPU cycles and perm space.
In time, it is possible to run out of perm space, causing the Teradata Database to crash.

Example

This example stops online archive logging on Table1.

LOGGING ONLINE ARCHIVE OFF FOR (DatabaseA.Table1);

Example

This example stops online archive logging on all the tables in the DatabaseA.

LOGGING ONLINE ARCHIVE OFF FOR (DatabaseA);

Chapter 6: Archive/Recovery Control Language
LOGGING ONLINE ARCHIVE ON

Teradata Archive/Recovery Utility Reference 179

LOGGING ONLINE ARCHIVE ON

Purpose
LOGGING ONLINE ARCHIVE ON begins the online archive process.

Use this statement for cluster archives.

Syntax

where

Access Privileges

To execute LOGGING ONLINE ARCHIVE ON, the user name specified in the logon
statement must have one of these privileges:

• Archive privilege on the database or table that being logged. The privilege is granted to a
user or an active role for the user.

• Ownership of the database or table.

Syntax Element Description

database Indicates the database that is included in online archive logging.

ALL [Optional] Indicates that the specified database and all of its child
databases are included in the statement.

databasename.tablename Indicates the table and database that is included in online archive
logging.

EXCLUDE [Optional] Specifies the databases that are excluded from the
statement.

2412A032

B
,

ALL

, EXCLUDE

(database1)-TO-(database2)

LOGGING ONLINE ARCHIVE ON FOR A

BA

,

ALL
(databasename.tablename)

(databasename)

(databasename)

;

Chapter 6: Archive/Recovery Control Language
LOGGING ONLINE ARCHIVE ON

180 Teradata Archive/Recovery Utility Reference

Usage Notes

An online archive is a process in which rows are archived from a table at the same time update,
insert, or delete operations on the table are taking place. When an online archive is initiated
on a table or a database, Teradata ARC creates a log for the specified table or a separate log for
each table in the specified database. The log, which contains all changes to the table, is saved as
a part of the archive process. The changes recorded in the log can be applied to any changes to
the table that occurred during the archive, such as a restore operation.

EXAMPLE

This example starts online archive logging on Table1.

LOGGING ONLINE ARCHIVE ON FOR (DatabaseA.Table1);

EXAMPLE

This example starts online archive logging on Table1, Table2 and Table3.

LOGGING ONLINE ARCHIVE ON FOR
(DatabaseA.Table1),
(DatabaseA.Table2),
(DatabaseA.Table3);

Use LOGGING ONLINE ARCHIVE ON to start online archive logging for specified objects
before submitting an archive job for those objects. After logging is started for a target table,
any changed rows to that table are recorded into a log that grows until the database runs out of
space or LOGGING ONLINE ARCHIVE OFF is used to end online archive logging.

The total number of tables that can be in an active state of online archive logging at the same
time is 10000.

When the table is restored or copied, the changes recorded in the log are used to roll back
those changes in the table to the point that was established when online archive logging was
started on that table.

Disallowed Tables

There are restrictions on the types of tables used with LOGGING ONLINE ARCHIVE ON.
Do not specify these tables, or the online archive process will abort:

• Temporary tables

• Permanent journal tables

• Fastload aborted tables

• Multiload aborted tables

• Multiload work tables

• Online archive logging activated tables

Chapter 6: Archive/Recovery Control Language
LOGMECH

Teradata Archive/Recovery Utility Reference 181

LOGMECH

Purpose
The LOGMECH statement sets the extended security mechanism used by Teradata ARC to log
onto a Teradata Database.

Syntax

Usage Notes

The LOGMECH statement must be specified with the LOGDATA statement before the
LOGON statement in order to take effect.

As seen in the syntax diagram, above, logon-mechanism is the name of the logon mechanism
that you want to use for a specific archive job. The specified logon mechanism is then used for
all Teradata ARC sessions that will be logging on.

For a complete list of supported logon mechanisms, see Teradata Call-Level Interface Version 2
Reference for Network-Attached Systems.

2412A022

LOGMECH logon-mechanism ;

.

Chapter 6: Archive/Recovery Control Language
LOGOFF

182 Teradata Archive/Recovery Utility Reference

LOGOFF

Purpose
The LOGOFF statement ends all Teradata Database sessions logged on by the task and
terminates Teradata ARC.

Syntax

Usage Notes

When Teradata ARC accepts the LOGOFF statement, it issues this message and ends the
session:

ARCMAIN HAS LOGGED OFF n SESSIONS

Teradata ARC control language parser ignores any statements following the LOGOFF
statement.

2412A017

LOGOFF ;

QUIT

.LOGOFF

.QUIT

Chapter 6: Archive/Recovery Control Language
LOGON

Teradata Archive/Recovery Utility Reference 183

LOGON

Purpose
The LOGON statement specifies the name of the Teradata machine that Teradata ARC should
connect to, as well as the user name and password that should be used.

Note: A LOGON string that does not contain a userid and a password is interpreted as a SSO
(single sign-on) logon.

Syntax

where

Syntax
Element Description

tdpid The identifier of the Teradata machine that will be used for this job.

Note: tdpid is followed by a “/”.

The tdpid must be a valid identifier configured for your site.

If you do not enter a value, tdpid defaults to the id established by the system
administrator.

userid User identifier.

A userid can be up to 30 characters.

Your userid must be authorized to perform the operations specified by subsequent
utility statements.

Note: This field is optional if single sign-on (SSO) is implemented

password Password associated with the user name.

A password can be up to 30 characters.

If you use a null password, include a comma before the semicolon.

Note: This field is optional if Single Sign-On (SSO) is implemented

’accid’ Account identifier associated with the userid.

If you omit this value, Teradata ARC uses the default account identifier defined
when your userid was created.

2412B006

LOGON ;

userid , passwordtdpid/ , 'acctid'.LOGON

Chapter 6: Archive/Recovery Control Language
LOGON

184 Teradata Archive/Recovery Utility Reference

Usage Notes

The LOGON statement causes Teradata ARC to log on only two control sessions for the user.

When Teradata ARC encounters an ARCHIVE, RESTORE, or COPY statement, it
automatically logs on any additional data sessions specified in the SESSIONS runtime
parameter. ARCHIVE, RESTORE, and COPY statements are the only statements that need
these sessions.

The LOGON statement establishes sessions by:

• Identifying the user to the Teradata Database

• Specifying the account to charge for system resources

When the LOGON statement is accepted, this message is displayed:

2 SESSIONS LOGGED ON

If the user who is specified by userid is logged onto the Teradata Database through a program
other than Teradata ARC, Teradata ARC terminates as soon as it encounters a BUILD, COPY,
RESTORE, ROLLBACK, or ROLLFORWARD statement. To determine whether a user is
logged onto the Teradata Database, Teradata ARC performs a SELECT on database
DBC.sessionInfo. Therefore, the user attempting to log on must have SELECT privileges on
DBC.sessionInfo.

If a LOGON statement has already been executed during the run of Teradata ARC, Teradata
ARC logs off all Teradata Database sessions from the previous logon.

The implementation of the SSO feature provides the ability to log onto a workstation once
and then access the Teradata Database without having to provide a user name and password.
SSO saves the time required to enter these fields, which are now optional. Additionally, certain
authentication mechanisms (e.g., Kerberos, NTLM) do not send passwords across the
network to further heighten security. SSO requires support of both the database and the client
software.

Chapter 6: Archive/Recovery Control Language
RELEASE LOCK

Teradata Archive/Recovery Utility Reference 185

RELEASE LOCK

Purpose
The RELEASE LOCK statement removes a utility (HUT) lock from the identified databases or
tables.

Syntax

where

Syntax Element Description

(dbname) Name of the database on which the HUT lock is to be released.

ALL Indicates the operation affects the named database and its
descendants.

(dbname.tablename) Name of the table on which the HUT lock is to be released.

EXCLUDE Prevents HUT locks on the named databases from being released.

(dbname) Name of database to exclude from release.

ALL Excludes the named database and its descendants.

2412B013

RELEASE LOCK

,

A

;C

(dbname)

(dbname.tablename)

,
B

ALL

, EXCLUDE

A

(dbname1)-TO-(dbname2)

(dbname)

CB

, CLUSTERS

, CLUSTER

= nnn

,

ALL

, ALL , OVERRIDE

, BACKUP NOT DOWN

, AMP= n

, 5

4096

Chapter 6: Archive/Recovery Control Language
RELEASE LOCK

186 Teradata Archive/Recovery Utility Reference

Access Privileges

To release the HUT locks on a database or a table in a database, the user name specified in the
LOGON statement must have one of the following:

• The ARCHIVE or RESTORE privilege on the database or table where HUT locks are to be
released

• Ownership of the database or table where HUT locks are to be released

When you specify the OVERRIDE keyword, the user name specified in the LOGON statement
must have one of the following:

• The DROP DATABASE privilege on the specified database or table

• Ownership of the database or table

Usage Notes

During an archive or recovery operation, Teradata ARC places HUT locks on the objects
affected by the operation. These locks remain active during a Teradata Database or client
restart, and must be explicitly released by the RELEASE LOCK statement or by the RELEASE
LOCK keywords available on the ARCHIVE, REVALIDATE REFERENCES FOR,
ROLLBACK, ROLLFORWARD, RESTORE and BUILD statements. Teradata ARC issues a
message to report that the release operation is complete. It releases HUT locks when the AMPs
return to online operation.

(dbname1) TO (dbname2) Alphabetical list of databases to exclude from release.

The delimiting database names need not identify actual databases.

Database DBC is not included as part of a range.

CLUSTERS = nnn or
CLUSTER = nnn

Specifies AMP cluster for which locks are released.

nnn is the number of the cluster on which locks are released.

Specify up to 4096 cluster numbers.

Locks are not released on any offline AMPs in the specified clusters
unless you specify the ALL option.

ALL Releases locks on AMPs that are offline when the RELEASE LOCK
statement is issued.

Teradata ARC releases HUT locks when the AMPs return to online
operation.

Note: You cannot use the ALL keyword with the AMP option.

OVERRIDE Allows HUT locks to be released by someone other than the user
who set them.

BACKUP NOT DOWN Allows HUT locks to remain on non-fallback tables (with single
after image journaling) for those AMPs where the permanent
journal backup AMP is down. Teradata ARC releases all other HUT
locks requested.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
RELEASE LOCK

Teradata Archive/Recovery Utility Reference 187

If you specify the user name in the logon statement, the RELEASE LOCK statement or the
equivalent option in a utility statement releases all HUT locks placed on the specified database
or table. If you specify the OVERRIDE keyword in the RELEASE LOCK statement, Teradata
ARC releases all HUT locks on the specified database or table.

If HUT locks were placed at the database-level, they must be released at the database-level.

A table-level release lock against a database-level lock has no effect. Conversely, a database-
level release lock releases all locks on the database, including any database-level lock and all
table level locks.

You cannot specify ALL with the AMP keyword.

Warning: Releasing a HUT lock while another Teradata ARC job is running could result in data corruption
and/or unexpected errors from ARCMAIN or the Teradata Database.

BACKUP NOT DOWN Keywords

With Teradata Database, BACKUP NOT DOWN allows HUT locks to remain on non-fallback
tables with remote single after image journaling when the backup AMP is offline.

Chapter 6: Archive/Recovery Control Language
RESTORE

188 Teradata Archive/Recovery Utility Reference

RESTORE

Purpose
The RESTORE statement moves data from archived files to the same Teradata Database from
which it was archived, or moves data to a Teradata Database other than the one used for the
archive, if the database DBC is already restored. To use RESTORE to import data to the
Teradata Database, the table being restored must exist on the target Teradata Database.

Syntax

RESTORE
DICTIONARY

,

NO FALLBACK

JOURNAL

A

C

DATA TABLES (dbname)
ALL

,
B

ALL

, EXCLUDE

A

(xdbname)

CB

, CLUSTERS = nnn

, 4096 , RESTORE FALLBACK

(dbname.tablename)

, ABORT, NO BUILD , RELEASE LOCK

, AMP= n

, 5

TABLE

, CLUSTER

(xdbname1) TO (xdbname 2)

2412C004

, FILE = name ;

ALL FROM ARCHIVE

options

Chapter 6: Archive/Recovery Control Language
RESTORE

Teradata Archive/Recovery Utility Reference 189

where

Syntax Element Description

DATA TABLE or DATA
TABLES

Restores both fallback and non-fallback tables to all AMPs or
clusters of AMPs.

DICTIONARY TABLE or
DICTIONARY TABLES

Restores only dictionary rows.

This option is only allowed for:

• Archives created using the DICTIONARY option of the
ARCHIVE statement

• All-AMPs journal archives

NO FALLBACK TABLE or
NO FALLBACK TABLES

Restores tables without fallback to complete a previous all-AMPs or
cluster restore where AMPs were offline, or to restore non-fallback
data to specific AMPs recovering from disk failure.

JOURNAL TABLE or
JOURNAL TABLES

Restores an archived journal for subsequent use in a roll operation.

ALL FROM ARCHIVE Specifies that all databases and tables in the given archive file will be
restored and that any existing databases and tables will be
overwritten. This option is used in place of database/table names
normally specified.

No other database or table names can be specified to be restored
with this option.

(dbname) Name of the database to restore.

This form restores all tables of the type specified, and all stored
procedures (if specified type is FALLBACK) that are in the named
database and on the input file.

ALL Restores the named database and all descendants.

options

2412A019

 EXCLUDE TABLES (xtablename

,

xdbname .xtablename

)

 ALL PARTITIONS

, LOG WHERE (! conditional expression !)

QUALIFIED PARTITIONS

 , ERRORDB edbname

, ERRORTABLES

edbname .etablebname

A1

A1 A2

A3

A2

A3

)

etablebname

(

 PARTITIONS WHERE (! conditional expression !)

Chapter 6: Archive/Recovery Control Language
RESTORE

190 Teradata Archive/Recovery Utility Reference

(dbname.tablename) Name of a table within the named database to restore.

All tables should be distinct within the list. Duplicate table names
are ignored.

EXCLUDE Prevents specified databases from being restored.

(xdbname) Name of database to exclude from restore.

ALL Excludes the named database and all descendants.

(xdbname1) TO (xdbname2) Alphabetical list of client databases to exclude from the restore.

The delimiting database names need not identify actual databases.

Database DBC is not part of a range.

CLUSTERS = nnn or
CLUSTER = nnn

Specifies AMP clusters to restore.

nnn is the cluster number.

Specify up to 4096 clusters.

AMP = n Specifies the AMP (or a list of AMPs) to restore for Teradata
Database, where n is the number of the AMP.

Specify up to five AMPs with this option.

RESTORE FALLBACK Restores the fallback copy of primary and unique secondary indexes
while restoring the data.

This option applies only to data table restores of fallback tables.

Note: When the RESTORE FALLBACK option is specified and the
system formats or hash functions of the source and target systems
are different. then Teradata ARC will disable the RESTORE
FALLBACK request.

NO BUILD Prevents the Fallback and Secondary Index rows from being
created.

If NO BUILD is requested when restoring database DBC, the
request will be ignored.

If the NO BUILD keywords are used during a RESTORE statement,
a separate BUILD statement must be run for all databases and/or
tables that were restored. The tables will not be accessible until a
BUILD statement is run.

RELEASE LOCK Releases utility (HUT) locks on the named databases when the
restore completes successfully.

ABORT Aborts the restore if an AMP to which a non-fallback table is to be
restored is not online.

This option affects only an all-AMPs restore. It does not affect a
specific AMP restore.

EXCLUDE TABLE or
EXCLUDE TABLES

Prevents individual tables in the listed database from being
restored.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
RESTORE

Teradata Archive/Recovery Utility Reference 191

Access Privileges

To restore a database or a data table within the database, the user name specified in the
LOGON statement must have one of the following:

• The RESTORE privilege on the database or table that is being restored

• Ownership of the database or table

Only these users may restore database DBC:

• User DBC

• Users granted the RESTORE privilege on database DBC

To restore a journal table, the user name must have one of the following:

• The RESTORE privilege on the journal table itself or the database that contains the journal
table

• Ownership of the database that contains the journal table

To use the restored journal in recovery activities also requires RESTORE privilege on the data
tables being rolled forward.

 Usage Notes

Database SYSUDTLIB is linked with database DBC and is only restored if DBC is restored.
SYSUDTLIB cannot be specified as an individual object in a RESTORE statement.

(xtablename) Name of an individual table in the designated database to exclude.
Multiple tables are separated by commas.

This form (without a database name prefix) is used only when ALL
has not been designated on the current object.

(xdbname.xtablename) List of fully qualified tables (i.e., prefixed by database name) to
exclude.

PARTITIONS WHERE Specifies the conditional expression for partition-level operations.

(!conditional expression!) The conditional expression for specifying selected partitions.

LOG WHERE Specifies the rows that are logged to an error table for manual
insertion and deletion.

(!conditional expression!) The conditional expression for specifying rows to log to the error
table when restoring selected partitions

ALL PARTITIONS Restores all archived partitions for an archived PPI object.

QUALIFIED PARTITIONS Restores the same partitions specified in a previous selected-
partition restore.

ERRORDB and
ERRORTABLES

Specifies the location of the error log for partition-level operations.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
RESTORE

192 Teradata Archive/Recovery Utility Reference

If database DBC is involved in a restore operation, it is always restored first, followed by
database SYSUDTLIB. If additional databases are being restored, they follow SYSUDTLIB in
alphabetical order.

An all-AMPs restore or a specific AMP restore can use archive files created by any of the
following:

• An all-AMPs archive

• A cluster archive

• A specific AMP archive

• An archive of selected partitions

During a restore of a Teradata Database, Teradata ARC issues messages in the following
format as it restores tables, views, macros, stored procedures, triggers, UDFs and permanent
journals:

"UDFname" - n,nnn,nnn BYTES, n,nnn,nnn ROWS RESTORED
"procedurename" - n,nnn,nnn BYTES, n,nnn,nnn ROWS RESTORED
"macroname" - MACRO RESTORED
"methodname" - METHOD RESTORED
"methodname" - n,nnn,nnn BYTES, n,nnn,nnn ROWS RESTORED
"tablename" - n,nnn,nnn BYTES, n,nnn,nnn ROWS RESTORED
"triggername" - TRIGGER RESTORED
"UDTname" - TYPE RESTORED
"viewname" - VIEW RESTORED

When all tables are restored, Teradata ARC issues this message:

STATEMENT COMPLETED

At the start of a restore, or after a system restart, all offline AMPs are listed in the output log.

After each restore, compare the contents of the output log with listings of tables that were
restored to determine which tables were not restored to offline AMPs.

Teradata ARC supports duplicate rows in a restore operation. However, if a restart occurs
during the restore of a table with duplicate rows, the duplicate rows involved in the restart
might be removed.

Because unique secondary indexes are distributed across all AMPs, the RESTORE statement
does not rebuild unique secondary indexes, even if the indexes are in a cluster that is not being
restored. Use the BUILD statement to build and re-validate unique indexes.

All-AMP Restores

If you use an archive file from an all-AMPs archive for an all-AMPs restore of data tables,
Teradata ARC deletes the current copy of the data tables being restored before it restores the
archive copy.

Cluster AMP Restores

When restoring a cluster archive to a reconfigured system, run the cluster archives serially in
sequence. If this restore scenario is detected by ARCMAIN, the NO BUILD option is
automatically enabled, if not specified, and an explicit BUILD command must be run after all
restore jobs are completed.

Chapter 6: Archive/Recovery Control Language
RESTORE

Teradata Archive/Recovery Utility Reference 193

If you use NO BUILD for a cluster restore operation, submit an all-AMPs BUILD statement
after all the clusters are restored. Do not use the NO BUILD keywords for fallback table cluster
restore operations. If a cluster loses an AMP before the all-AMPs build, you must restore that
cluster manually.

If you use an archive file from a cluster archive for an all-AMPs restore of data tables, a
dictionary restore must precede the all-AMPs data tables restore.

You cannot access fallback tables until you complete a build operation. You cannot update
non-fallback tables until you complete a build operation.

Specific-AMP Restores

Use the specific-AMP restore to restore non-fallback data tables. Only perform this recovery
when the AMP to be restored is online to normal Teradata Database operations. If you use an
archive file from a specific-AMP archive, Teradata ARC does not delete the current copy of any
non-fallback table being restored before it restores the archive copy.

If one or more AMPs are offline during archive or restore, it might be necessary to perform
specific-AMP restores after you complete an all-AMPs or cluster restore. For example, if an
AMP is online at the start of a restore and goes offline during the process, you might need to
restore some non-fallback tables to the AMP when it comes back online. If, however, an AMP
is offline at the start of a restore and comes back online before the procedure completes,
Teradata ARC restores subsequent non-fallback tables to the AMP. In either case, specify the
NO FALLBACK TABLES option of the RESTORE statement.

Journal Table Restores

Restore dictionary definitions of the journal tables with the RESTORE DICTIONARY
statement against a journal archive. This creates empty journal tables.

If archive data sets containing journal tables are concatenated by some operation outside of
the Teradata Database, subsequent journal tables are not accessed from the concatenation by
the restore process.

Restore the definition of the journal table to a reconfigured system by performing a
DICTIONARY RESTORE from an all-AMPs journal archive.

Table Restores

When you restore an entire table, restore an all-AMPs archive before any specific-AMP archive
files. If you are restoring a single AMP from a disk failure, use the specific-AMP archive. Table
restores accomplish the following:

• An all-AMPs restore restores all specified tables that also exist on the input archive file.

• An all-AMPs data table restore from an all-AMPs or dictionary tables archive file also
restores the Data Dictionary entries for tables, views, macros, stored procedures, triggers,
and UDFs with the databases.

Chapter 6: Archive/Recovery Control Language
RESTORE

194 Teradata Archive/Recovery Utility Reference

Dictionary Table Restores

An all-AMPs dictionary tables restore must precede cluster restores involving fallback tables. A
DICTIONARY restore leaves all fallback tables recovered in a state of restoring and leaves all
indexes invalidated for non-fallback tables.

Restoring After a Disk Failure

To recover from a disk failure, run the Disk Copy and Table Rebuild utilities to restore
database DBC and all user data tables defined with the fallback option, then perform a specific
AMP restore.

Specify either database names or names of individual tables along with the EXCLUDE
keyword to specify the non-fallback tables that were not restored while the AMP was
inoperative.

When you cannot restore part of a non-fallback table during an all-AMPs restore because an
AMP is offline, the system invalidates unique secondary indexes for the table. After the AMP is
back online and the table has been restored, either drop and then recreate the unique
secondary indexes for the table, or use the BUILD statement to recreate secondary indexes.

To restore from a catastrophic condition (for example, to restore database DBC) on a system
that has permanent journaling, restore the system using an archive created from an ARCHIVE
JOURNAL TABLES statement in the following order:

1 RESTORE DATA TABLES (DBC) ...;

2 RESTORE DICTIONARY TABLES (DBC) ALL, EXCLUDE (DBC) ..., FILE = ARCHIVE;

Note: For this example, ARCHIVE is a journal archive.

3 RESTORE DATA TABLES (DBC) ALL, EXCLUDE (DBC) ...;

4 RESTORE JOURNAL TABLES (DBC) ALL, EXCLUDE (DBC);

Note: Follow Step 4 only if you intend to roll forward or roll back the journal images.

The RESTORE statement builds the fallback copy of primary and non-unique secondary
index subtables within a cluster. If the system fails during this process, RESTORE rebuilds
fallback copies automatically.

Referential Integrity

When a table is restored into a Teradata Database, the dictionary definition of that table is also
restored. The dictionary definitions of both the referenced (parent) and referencing (child)
table contain the complete definition of a reference.

Nonetheless, in restoring tables it is possible to create an inconsistent reference definition in
the Teradata Database. Hence, when either a referenced (parent) or a referencing (child) table
is restored, the reference may be marked in the dictionary definition tables as inconsistent.

While a table is marked as inconsistent with respect to referential integrity, no updates, inserts
or deletes are permitted. The table is fully usable only when the inconsistencies are resolved.

• If both the referenced (parent) and the referencing (child) tables are restored, use the
REVALIDATE REFERENCES FOR statement to validate references. See “REVALIDATE
REFERENCES FOR” on page 202.

Chapter 6: Archive/Recovery Control Language
RESTORE

Teradata Archive/Recovery Utility Reference 195

If inconsistent constraints remain after a REVALIDATE REFERENCES FOR statement has
been executed, use the ALTER TABLE DROP INCONSISTENT REFERENCES statement
to remove inconsistent constraints.

• If either the referenced (parent) table or the referencing (child) table is restored (but not
both tables), the REVALIDATE REFERENCES FOR statement is not applicable. Use an
ALTER TABLE DROP INCONSISTENT REFERENCES statement to drop the
inconsistent references.

Restores of Selected Partitions

You can restore selected partitions of PPI tables. This allows you to archive and restore only a
subset of data in a PPI table.

Restrictions on Restoring Selected Partitions

Before attempting to restore selected partitions, be sure to read “Potential Data Risks When
Archiving/Restoring Selected Partitions” on page 33 and “Changes Allowed to a PPI Table” on
page 147.

The following restrictions apply to restoring selected partitions:

• Restoring selected partitions is not allowed to a machine with a hash function that is
different from the source machine, but a different configuration is allowed.

• To RESTORE or COPY selected partitions, a table must already exist on the target system.
For COPY, the existing table must have been created by a full-table COPY from the source
machine.

• Restoring selected partitions is not allowed to a table that has undergone any of the
following major DDL changes:

• Adding, modifying, or dropping columns.

• Certain changes during RESTORE and COPY operations. For more information, see
“Restrictions on Copying Partitioned Data” on page 164.

Restoring selected partitions is not allowed to a table that has undergone any of the following
major DDL changes:

• Changing primary index columns

• Changing from PPI to NPPI, or visa versa

• Adding or changing referential integrity constraints

Other restrictions exist for archiving selected partitions of PPI tables. For more information,
see “Restrictions on Archiving Selected Partitions” on page 146.

Chapter 6: Archive/Recovery Control Language
RESTORE

196 Teradata Archive/Recovery Utility Reference

Keywords for Restoring Selected Partitions

These options are available for restoring selected partition archives:

• PARTITIONS WHERE

• LOG WHERE

• ERRORDB/ERRORTABLES

• ALL PARTITIONS

• QUALIFIED PARTITIONS

The next sections describe how to use the options for selecting partitions of PPI tables.

PARTITIONS WHERE Keyword

Use the PARTITIONS WHERE option to specify the conditional expression, which contains
the definition of the partitions that you want to restore. The following restrictions apply to the
use of PARTITIONS WHERE:

• The object is an individual table (not a database).

• The source and target tables have a PARTITIONS BY expression defined.

• The restore is an all-AMP restore (not a dictionary, cluster, or journal restore).

• If the table belongs to a database that is specified in the RESTORE statement, the table is
excluded from the database-level object (with EXCLUDE TABLES) and is individually
specified.

• Any name specified in the conditional expression is within the table being specified.
(Using table aliases and references to databases, tables, or views that are not specified
within the target table result in an error.) It is recommended that the only referenced
columns in the conditional expression be the partitioning columns or system-derived
column PARTITION of the table. References to other columns does not contribute to
partition elimination, and might accidently qualify more partitions than intended.

LOG WHERE Keyword

If the PARTITIONS WHERE option does not capture all the rows that need to be restored, use
the LOG WHERE option. This option inserts into a Teradata-generated error table archived
rows that both fall outside the partitions specified by the PARTITIONS WHERE conditional
expression and match the LOG WHERE conditional expression.

Use the option only if PARTITIONS WHERE is also specified for the object. If LOG WHERE
is omitted, the default is to log to the error table only the rows in the partitions being restored
that have errors.

ERRORDB/ERRORTABLES Keyword

The ERRORDB and ERRORTABLES options are mutually exclusive; specify only one option
for an object. Also, specify either the PARTITIONS WHERE or ALL PARTITIONS option
when using either ERRORDB or ERRORTABLES.

• If you specify ERRORTABLES without a database name, or if neither ERRORTABLES nor
ERRORDB is specified, the error table is created in the same database as the base table.

Chapter 6: Archive/Recovery Control Language
RESTORE

Teradata Archive/Recovery Utility Reference 197

• If you do not specify ERRORTABLES, by default the naming convention for the error table
is the name of the base table plus the prefix “RS_”. For example, the error table for a table
named “DataTable” is “RS_DataTable.” Names are truncated if they exceed 30 bytes.

ALL PARTITIONS Keyword

Use the ALL PARTITIONS option to restore all of the archived partitions in a table. These
restrictions apply:

• The object being restored is an individual table, or the ALL FROM ARCHIVE option is
specified.

• The source and target tables contain a defined PARTITIONS BY expression.

• The restore is an all-AMP restore rather than a dictionary, cluster, or journal restore.

• PARTITIONS WHERE is not specified for the object.

• The partition bounding condition must have been well-defined when the backup was
performed. A bounding condition is well-defined if the PARTITION BY expression on the
source table consists of a single RANGE_N function, and if the specified range does not
include NO RANGE or UNKNOWN. (Use ANALYZE to determine whether a selected
partition is well-defined.)

If a conditional expression is not well-defined, Teradata ARC issues an error, and you must
use PARTITIONS WHERE for the restore operation rather than ALL PARTITIONS.

QUALIFIED PARTITIONS Keyword

Use this option only to restore a specific-AMP archive after restoring selected partitions from
an all-AMP archive done while an AMP is down.

Examples of Keywords for Restoring Selected Partitions

The next example restores all of the rows of the TransactionHistory table for the month of July
2002:

RESTORE DATA TABLES
(SYSDBA.TransactionHistory)
(PARTITIONS WHERE

(! TransactionDate BETWEEN DATE ‘2002-07-01’ AND DATE ‘2002-07-
31’ !)

),
RELEASE LOCK,
FILE=ARCHIVE;

Chapter 6: Archive/Recovery Control Language
RESTORE

198 Teradata Archive/Recovery Utility Reference

The following example restores all of the rows for the TransactionHistory table for the month
of July 2001 and logs all rows for the month of August 2001 to an error table called TransError:

RESTORE DATA TABLES
(SYSDBA.TransactionHistory)
(PARTITIONS WHERE

(! TransactionDate BETWEEN DATE ‘2001-07-01’ AND DATE ‘2001-07-
31’ !),

LOG WHERE
(! TransactionDate BETWEEN DATE ‘2001-08-01’ AND DATE ‘2001-08-

31’ !),
ERRORTABLES SYSDBA.TransError
),
RELEASE LOCK,
FILE=ARCHIVE;

The following example restores all data for all tables in database SYSDBA, including all
partitions archived for table TransactionHistory:

RESTORE DATA TABLES
(SYSDBA)
(EXCLUDE TABLES (TransactionHistory)),

(SYSDBA.TransactionHistory)
(ALL PARTITIONS),

RELEASE LOCK,
FILE=ARCHIVE;

Using Keywords with RESTORE

The RESTORE statement is affected by the following keywords. For information about the
keywords that apply to restoring partitioned data, see “Restores of Selected Partitions” on
page 195.

RESTORE DICTIONARY TABLE Keywords

Use the all-AMPs journal archive to restore journal dictionary rows to a Teradata Database
that has been reconfigured since the journal archive was created. If you restore the dictionary
for an entire database, Teradata ARC restores table, view, macro, stored procedure, and trigger
definitions. If you restore specific tables, Teradata ARC restores only the definitions for those
tables.

AMP Keyword

Do not specify this option for:

• Dictionary table restores

• Database DBC when you are restoring data tables

With Teradata Database, use the AMP=n option to specify up to five AMPs.

This option applies only with the NO FALLBACK TABLE or JOURNAL TABLE options. It is
useful following all-AMPs restores when all AMPs are not available at the time of the
operation and non-fallback or journal receiving tables are involved.

You must specify the processor to recover with the journal whenever you restore journal tables
to specific processors.

Chapter 6: Archive/Recovery Control Language
RESTORE

Teradata Archive/Recovery Utility Reference 199

If the journal to restore contains after images on a backup processor, the journal rows restored
by Teradata ARC are sent to the backup processor for the AMP you specify in the statement.

CLUSTER Keyword

When you specify this option, the following rules apply:

• The option is allowed only when restoring data tables.

• You must restore the dictionary before you restore the cluster.

• You can restore a cluster only from a cluster archive.

• You must perform a build operation on a non-fallback table with unique secondary
indexes before you can update it using Teradata SQL.

• The building of fallback data during cluster restores depends on the Teradata Database
software release.

Teradata ARC builds all indexes except unique indexes. You cannot update a fallback table
with unique indexes using Teradata SQL after a cluster restore until you perform a BUILD
operation.

If any AMPs in the list of clusters are offline, you must restore any non-fallback table to those
AMPs when they are brought back online. A specific AMP restore can be from a specific AMP
or cluster archive.

Teradata ARC releases HUT locks at the cluster level.

RESTORE FALLBACK Keywords

If you do not specify this option, Teradata ARC restores only a single copy and then builds the
fallback copy.

If an AMP is down during either the archive or the restore, Teradata ARC does not restore
non-unique indexes.

If you specify both the RESTORE FALLBACK and NO BUILD options, one of the following
occurs:

• If the archive is for all AMPs, then Teradata ARC ignores NO BUILD.

• If the archive and restore are both cluster level, Teradata ARC ignores NO BUILD.

• If the table has unique indexes, the restore operation is not complete until you apply an all-
AMPs BUILD statement to the fallback tables. Teradata ARC builds non-unique indexes
within the cluster.

If you specify both the RESTORE FALLBACK and NO BUILD options to a cluster level
archive and the restore is to all AMPs, then Teradata ARC does not build indexes or revalidate
the primary subtables. In this case, the table is not fully restored, and you cannot access it
using Teradata SQL until you do one of the following:

• Perform another restore operation without the NO BUILD option and with the RESTORE
FALLBACK option.

• Perform another restore operation and apply an all-AMPs BUILD statement to the
fallback tables.

Chapter 6: Archive/Recovery Control Language
RESTORE

200 Teradata Archive/Recovery Utility Reference

When you restore a set of cluster archives to a reconfigured Teradata Database, restore each
cluster archive to all-AMPs. Use the RESTORE FALLBACK option either on all of the cluster
restore operations or on none of the cluster restore operations. If you do not follow this
procedure, and the archive contains fallback tables, Teradata ARC reports an error and
terminates the restore operation.

Use NO BUILD for all but the last all-AMPs restore operation. NO BUILD is optional for the
last all-AMPs restore operation.

When you restore a set of cluster archives to the same configuration, always perform cluster
level restore operations.

If you specify the RESTORE FALLBACK option without the NO BUILD option, the restore
operation continues processing on a reconfigured system instead of restarting.

Note: If you are processing a fallback table, this option disables the HALT and PAUSE runtime
parameters until the restore completes.

NO BUILD Keywords

These keywords prevent fallback data and secondary indexes from being built on fallback
tables when restoring cluster archives to all AMPs. Use this option if you are restoring cluster
archives to a Teradata Database that was reconfigured after the cluster archives were created.

When you restore journal tables to a Teradata Database that has been reconfigured since the
journal archive was made, specify NO BUILD to prevent sorting of the restored journal and
distribution of fallback rows. This procedure is useful if you need to restore more than one
journal archive (that is, you need to restore an all-AMPs journal archive and one or more
specific AMP journal archives).

If the NO BUILD keywords are used during a RESTORE statement, run a separate BUILD
statement for all databases and/or tables that were restored. The tables will not be accessible
until a BUILD statement is run.

ALL FROM ARCHIVE Keywords

The ALL FROM ARCHIVE keywords take the place of the database and/or table names that
are normally specified after the DATA, DICTIONARY, JOURNAL, or NO FALLBACK
TABLES keywords.

You are not allowed to specify any other database or table names to be restored when using
ALL FROM ARCHIVE. All databases and tables in the given archive file will be restored, and
any existing databases or tables will be overwritten.

CATALOG and Fastpath are not supported while using ALL FROM ARCHIVE. If CATALOG
(or Fastpath) is enabled when ALL FROM ARCHIVE is specified, it will be disabled and a
warning message will be given.

ALL FROM ARCHIVE cannot be used to restore database DBC, and DBC must be excluded
by the user if it is present in the archive being restored.

Chapter 6: Archive/Recovery Control Language
RESTORE

Teradata Archive/Recovery Utility Reference 201

EXCLUDE TABLES Keyword

Use the EXCLUDE TABLES option to specify one or more tables to skip during a database-
level RESTORE. Teradata ARC does not restore any dictionary or data for the specified tables.
If any of the tables already exist in the target database, they are unaffected by the RESTORE
operation.

Also specify the EXCLUDE TABLES option to retain an existing table during a database-level
RESTORE if that table was not archived (or if it was excluded during an ARCHIVE). If you fail
to specify the EXCLUDE TABLES option, the table will be dropped and replaced with the data
(if any) stored in the archive.

Chapter 6: Archive/Recovery Control Language
REVALIDATE REFERENCES FOR

202 Teradata Archive/Recovery Utility Reference

REVALIDATE REFERENCES FOR

Purpose
When a referenced (or parent) or referencing (or child) table is restored, the reference is
inconsistently marked in the database dictionary definitions. A table so affected cannot be
subject to updates, inserts or deletes.

The REVALIDATE REFERENCES FOR statement validates reference indexes that are marked
as inconsistent.

Syntax

where

Syntax Element Description

(dbname) Name of database to be re-validated.

ALL Revalidates all child databases of specified database. All database
tables with inconsistent indexes are processed.

(dbname.tablename) Name of a table in the database to be revalidated.

EXCLUDE Omits identified database from processing.

(dbname) Name of database excluded from processing.

ALL Excludes all child databases of specified database.

(dbname1) TO (dbname2) Alphabetical list of databases to be excluded from processing.

Database DBC is NOT included in this list. It will be excluded only
if specifically identified.

RELEASE LOCK Keywords to release HUT lock on table upon completion of
processing. (optional)

GR01B013

REVALIDATE REFERENCES FOR

,

A

;B

(dbname)
ALL

BA
,

ALL

, EXCLUDE (dbname)

, RELEASE LOCK , ERRORDB dbname

(dbname.tablename)

(dbname1) TO (dbname2)

Chapter 6: Archive/Recovery Control Language
REVALIDATE REFERENCES FOR

Teradata Archive/Recovery Utility Reference 203

Access Privileges

To revalidate the reference indexes of a table, the user name specified in the LOGON
statement must have one of the following:

• RESTORE privileges on the table being revalidated

• Ownership privileges on the database or table

Duplicate names in database or tablename lists are ignored. The list of excluded names
takes precedence over the list of included names. If a database or table name is covered in
both lists, only the exclusion list is effective.

Usage Notes

It is possible to define many referential constraints for a table. When such a table is restored,
these constraints are marked inconsistent. The REVALIDATE REFERENCES FOR statement
validates these inconsistent constraints against the target table.

If inconsistent constraints remain after a REVALIDATE REFERENCES FOR statement has
been executed, the SQL statement ALTER TABLE DROP INCONSISTENT REFERENCES
must be used to remove them. See “RESTORE” on page 188.

REVALIDATE REFERENCES FOR creates error tables containing information about data
rows that failed referential constraint checks.

One error table is created for each referential constraint when the corresponding reference
index becomes valid again. The name of each error table consists of the referencing (or child)
table name appended by the reference index number. Each error table has the same fields
definitions as the corresponding referencing table. The rows it contains are exact copies of the
rows that violated the referential constraint in the referencing table.

REVALIDATE REFERENCES FOR performs the following for inconsistent reference indexes
that can be validated:

• Validates the inconsistent reference index on the target table and its parent/child tables

• Creates an error table

• Inserts rows that fail the referential constraint specified by the reference index into the
error table

If an inconsistent reference cannot be validated, the index is skipped and reported in a
message at the end of the operation.

For information on referential integrity, see the SQL Reference: Fundamentals.

ERRORDB Keyword to generate error tables in designated database. (optional)

(dbname) Name of database containing error tables generated. If no table
name is specified, error tables are created in the database
containing the table being processed.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
REVALIDATE REFERENCES FOR

204 Teradata Archive/Recovery Utility Reference

Example

Suppose an Employee table has just been restored with two inconsistent references defined on
the table. One indicates the Employee table references Department table; the other indicates
Employee table references Project table.

Now, Project table is dropped before a restore operation and the following statement is
submitted:

REVALIDATE REFERENCES FOR (Employee);

Assume the referential constraint specifying Employee references Department has reference
index number 4. The following occurs:

1 Error table Employee_4 is created with information about the data rows in Employee that
reference Department.

2 The reference index specifying Employee table is referencing Department table is
validated.

3 The reference index specifying that Employee table is referencing Project table remains
inconsistent. A message reports that Employee table still contains inconsistent reference
indexes.

4 Submit the SQL statement:

ALTER TABLE EMPLOYEE DROP INCONSISTENT REFERENCES;

5 Then, query error table Employee_4 to correct the data rows in the Employee table.

Chapter 6: Archive/Recovery Control Language
ROLLBACK

Teradata Archive/Recovery Utility Reference 205

ROLLBACK

Purpose
The ROLLBACK statement recovers specified data tables, with before journals, to the state
they were in before they were modified.

Syntax

where

Syntax Element Description

(dbname) Name of the database to be rolled back.

ALL Indicates that the rollback affects the named database and its
descendants.

ALL recovers all database tables with after images.

(dbname.tablename) Name of the table. Specify only distinct tables within the list.

If you are recovering a specific AMP, the specified table must be
non-fallback because fallback tables are completely recovered by
any previous all-AMPs rollback.

2412B014

ROLLBACK

,

A

JOURNAL ;D

(dbname)
ALL

BA
,

ALL

, EXCLUDE

(dbname1)-TO-(dbname2)

(dbname)

CB

, TO

DC
, RELEASE LOCK , NO DELETE , ABORT

(dbname.tablename)

chkptname

chkptname, eventno

eventno

, DELETE

, USE CURRENT
RESTORED

, AMP= n

, 5

, PRIMARY DATA

Chapter 6: Archive/Recovery Control Language
ROLLBACK

206 Teradata Archive/Recovery Utility Reference

Access Privileges

To rollback a database or a table in the database, the user name specified in the LOGON
statement must have one of the following:

• The RESTORE privilege on the objects to recover

• Ownership of the objects to recover

Usage Notes

The ROLLBACK statement erases all changes made to a database or selected tables of a
database. The ROLLBACK statement can be used to roll back data tables on all or a subset of
the processors. A rollback uses a single journal table as input. All objects in the object list must
share the same journal table.

EXCLUDE Prevents the named database from being recovered.

(dbname) Name of the excluded database.

ALL Excludes the named database and its descendants from being
recovered.

(dbname1) TO (dbname2) Alphabetical list of client databases to be excluded from the
recovery operation.

The delimiting database names need not identify actual databases.

Database DBC is not included as part of a range.

chkptnamechkptname,
eventno or eventno

Specifies the termination point for the rollback.

PRIMARY DATA Applies primary and fallback row images during the rollback
process. Teradata ARC ignores secondary index rows and fallback
rows for online AMPs.

RELEASE LOCK Releases utility locks on the named databases automatically when
the rollback operation completes.

NO DELETE or DELETE Deletes, or refrains from deleting, the restored journal subtable
after the rollback is complete.

The default is DELETE.

ABORT Stops the operation if an AMP to which a non-fallback archive is to
be recovered is offline.

This option does not affect specific AMP operations.

USE CURRENT JOURNAL
or USE RESTORED
JOURNAL

Uses the current journal or a subtable that was previously restored
to the Teradata Database.

CURRENT uses the active journal subtable followed by any saved
subtable.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
ROLLBACK

Teradata Archive/Recovery Utility Reference 207

A rollback is not allowed over a data definition statement that changed a table’s structure. If
Teradata ARC encounters such a change to a table during a rollback, the rollback for that table
stops and the program prints a message in the output listing.

If you are recovering a nonfallback table with unique secondary indexes and an AMP is offline,
Teradata ARC invalidates unique secondary indexes on the table. After the AMP returns
online, drop and recreate the unique secondary indexes for that table.

You can use the RELEASE LOCK statement instead of the RELEASE LOCK keywords. Use the
RELEASE LOCK statement to release all HUT locks and the RELEASE LOCK keyword to
release specific HUT locks.

To roll forward using a current single image journal, first roll back to the checkpoint. After the
rollback has completed, use ROLLFORWARD to restore the data.

chkptname Parameter

Use the CHECKPOINT statement to generate the checkpoint for the journal you use in the
recovery (the one for the data tables you want to roll back).

If you specify this option, Teradata ARC scans the journal table for the identified checkpoint.
If that checkpoint does not exist, it returns an error.

If you use an unqualified chkptname and there are multiple rows in the journal table that all
have the same name, Teradata ARC uses the last chronological entry made. In the
ROLLFORWARD statement, on the other hand, Teradata ARC uses the first chronological
entry made.

Alpha characters in a chkptname are not case sensitive. For example, chkptname ABC is equal
to chkptname abc. If you do not specify this option, Teradata ARC uses the entire journal table.

DELETE Keyword

Do not specify any DELETE options when you use the current journal for the recovery. Use
NO DELETE when you want to recover selected tables and then later want to recover the
balance of the tables that might have changes in the journal.

ABORT Keyword

ABORT aborts an all-AMPs roll operation that includes non-fallback tables or single copy
journal tables if an AMP is down. This option does not affect specific AMP roll operations.

PRIMARY DATA Keywords

Use this keyword phrase to reduce the amount of I/O during rollback. Using this option
improves the rollback performance when you are recovering a specific AMP from a disk
failure.

If you are recovering a specific AMP, unique indexes are invalid, so always follow a
ROLLBACK statement that uses the PRIMARY DATA option with a BUILD statement.

Chapter 6: Archive/Recovery Control Language
ROLLFORWARD

208 Teradata Archive/Recovery Utility Reference

ROLLFORWARD

Purpose
The ROLLFORWARD statement recovers specified data tables, with after journals, to their
state following a modification.

Syntax

where

Syntax Element Description

(dbname) Name of the database to be rolled forward.

ALL Rolls forward the named database and its descendants.

(dbname.tablename) Name of the table to be rolled forward.

If you are recovering a specific AMP, the specified table must be non-
fallback because fallback tables are completely recovered by any previous
activity.

EXCLUDE Prevents the named database from recovery.

(dbname) Name of the database excluded from recovery.

2412A015

ROLLFORWARD

,

A

JOURNAL ;D

(dbname)
ALL

BA
,

ALL

, EXCLUDE

(dbname1)-TO-(dbname2)

(dbname)

CB

DC
, RELEASE LOCK

, ABORT

(dbname.tablename)

, TO chkptname

chkptname, eventno

eventno

, NO DELETE

, DELETE

CURRENT
RESTORED

, PRIMARY DATA

, USE

, AMP= n

, 5

Chapter 6: Archive/Recovery Control Language
ROLLFORWARD

Teradata Archive/Recovery Utility Reference 209

Access Privileges

To roll forward a database or a table in the database the user name specified in the LOGON
statement must have one of the following:

• The RESTORE privilege on the objects being recovered

• Ownership of the objects

Usage Notes

A rollforward operation uses a single journal table as its input. All tables you specify for
recovery must be defined with the same journal table. A ROLLFORWARD statement can
recover either all data tables or a subset of the tables that are protected by the same journal
table.

Use the ROLLFORWARD statement to rollforward data tables on all or a subset of the AMPs.

You cannot execute a rollforward over a data definition statement that changed a table’s
structure. If Teradata ARC encounters such a change to a table during a rollforward, the
rollforward for that table stops and an error message is placed in the output listing.

ALL Excludes from recovery the named database and its descendants.

(dbname1) TO
(dbname2)

Alphabetical list of client databases to be excluded from recovery.

The delimiting database names need not identify actual databases.

Database DBC is not included as part of a range.

chkptname, chkptname,
eventno or eventno

Specifies the termination point for the rollforward operation.

PRIMARY DATA Applies primary and fallback row images during the rollforward process.
Teradata ARC ignores secondary index rows and fallback rows for online
AMPs.

RELEASE LOCK Releases utility (HUT) locks on the named databases automatically when
rollforward completes.

NO DELETE

or

DELETE

Deletes, or refrains from deleting, the restored journal subtable after the
rollforward is complete.

The default is DELETE.

ABORT Aborts the roll operation if an AMP to which a non-fallback archive to be
recovered is offline.

This option affects only all-AMPs roll operations. It does not affect
specific AMP operations.

CURRENT or
RESTORED

Uses the current journal or a subtable that was previously restored to the
Teradata Database.

CURRENT uses the active journal subtable followed by any saved
subtable.

Syntax Element Description

Chapter 6: Archive/Recovery Control Language
ROLLFORWARD

210 Teradata Archive/Recovery Utility Reference

If you are recovering a nonfallback table with unique secondary indexes and an AMP is offline,
then Teradata ARC invalidates unique secondary indexes on the table. After the AMP returns
online, you must drop and then recreate the unique secondary indexes for that table or use the
BUILD DATA TABLES statement on the table.

The BUILD DATA TABLES statement is much faster than dropping and recreating the unique
secondary indexes.

If the table being recovered has a single after image journal and the recovery operation uses
the current journal, then you cannot roll forward data rows on the AMP that are backed up by
an AMP that is offline. If the table being recovered has a local single after image journal, it may
be recovered only to the last archived data.

If the tables to be rolled forward have a dual after-image journal, then the rollforward
operation (by default) uses the journal tables that exist on each AMP to roll forward those
AMPs.

When you perform a restore and rollforward, you can bring the affected data tables on the
AMPs to their state after a modification. Specific AMP rollforwards are typically performed to
do one of the following:

• Complete a previous all-AMPs rollforward that happened while some AMPs were offline.

• Recover a single AMP from a disk failure.

chkptname Parameter

Use the CHECKPOINT statement to generate the checkpoint entry for the journal you use in
the recovery (the one for the data tables you want to roll forward).

If you specify this option, Teradata ARC first scans the journal table for the identified
checkpoint. If the checkpoint does not exist, Teradata ARC returns an error.

If you use an unqualified chkptname, and there are multiple checkpoint rows in the journal
table with the same name, Teradata ARC uses the first chronological entry made. Note this
difference from the ROLLBACK statement, where Teradata ARC uses the last entry made.

Alpha characters in a chkptname are not case sensitive; for example, chkptname ABC is equal
to chkptname abc. If you do not specify this option, Teradata ARC uses the entire journal table.

PRIMARY DATA Keywords

Use this keyword phrase to reduce the amount of I/O during rollforward. Using this option
improves the rollforward performance when recovering a specific AMP from a disk failure.

If you are recovering a specific AMP, unique indexes are invalid, so always follow a
ROLLFORWARD statement that uses the PRIMARY DATA option with a BUILD statement.

RELEASE LOCK Keywords

With Teradata Database, RELEASE LOCK does not release HUT locks on non-fallback tables
with remote single after image journaling when the backup AMP is offline.

Chapter 6: Archive/Recovery Control Language
ROLLFORWARD

Teradata Archive/Recovery Utility Reference 211

DELETE Keyword

Use NO DELETE keyword phrase to recover selected tables if you will later want to recover the
balance of the tables with changes in the journal.

Do not specify any DELETE options when you use the current journal for the recovery.

ABORT Keyword

The ABORT keyword aborts an all-AMPs roll operation that includes non-fallback tables or
single copy journal tables if an AMP is down. This option does not affect specific AMP roll
operations.

Chapter 6: Archive/Recovery Control Language
SET QUERY_BAND

212 Teradata Archive/Recovery Utility Reference

SET QUERY_BAND

Purpose
The SET QUERY_BAND statement provides values for a session to precisely identify the
origins of a query.

Syntax

where

Usage Notes

A query band is a set of name and value pairs that can be set on a session to identify where a
query originated. These identifiers are in addition to the current set of session identification
fields, such as user id, account string, client id, and application name. Query bands offer a way
to identify the user and application, for example, when SQL-generating tools and web
applications use pooling mechanisms that hide the identity of users because each connection
in the pool logs into the database using the same user account. Without query bands, there is
no way to tell the source of the request when the request comes from a multi-tiered
application. Another potential use of query bands is troubleshooting, when it is necessary to
provide the specific user, application, or report that issued a request.

All SET QUERY_BAND statements submitted by Teradata ARC are session query bands. A
session query band is stored in a session table and recovered after a system reset. (Teradata
ARC does not use transaction query bands.)

Syntax Element Description

query_band_string Associates a name with a value.

Example

SET QUERY_BAND = 'Job=payroll;' ;

2412A033

query_band_string

.SET

SET QUERY_BAND = ;' ; '

Teradata Archive/Recovery Utility Reference 213

CHAPTER 7

Restarting Teradata ARC

This chapter describes how to recover if your client system, Teradata ARC, or the Teradata
Database fail during an archive/recovery operation. Topics include:

• Restart Log

• Restarting Teradata ARC

• Restart After Client or Teradata ARC Failure

• Restart After a Teradata Database Failure

• Recovery Control Catalog

Restart Log

Teradata ARC does not record most of the modifications it makes to a database in the
transient journal. Instead, Teradata ARC uses a file called restart log to maintain the operation
status of the job being run.

The restart log catalogs the effects of utility operations on a database or table. Teradata ARC
writes restart entries in the log at the beginning and end of each significant step (and at
intermediate points in a long running task). If a job is interrupted for some reason, Teradata
ARC uses this log to restart the archive or restore operation that was being performed.

When you start Teradata ARC, it first places markers into the restart log to keep track of the
current input and logon statements and then copies the command stream to the restart log.
Teradata ARC uses these commands during restart to continue with the most recent activity
using the same logon user originally entered.

Restarting Teradata ARC

The Teradata Database uses task execution logic to restart an archive or to restore jobs. The
logic differs depending on the operation, as follows.

During a Database DBC Operation

If a client system or Teradata ARC failure interrupts an archive or restore of database DBC,
you cannot restart the operation. In this case, perform the entire restore process again,
including re-initializing the Teradata Database and the dictionary tables.

Chapter 7: Restarting Teradata ARC
Restart After Client or Teradata ARC Failure

214 Teradata Archive/Recovery Utility Reference

Use the RESTART option if a multiple database archive or restore that includes database DBC
is interrupted during the archive or restore of some database other than database DBC. But
before you restore database DBC, initialize the Teradata Database by doing the following:

1 Reconfigure the system from a single AMP to the desired configuration.

2 Run the DBC Initialization Procedure (DIP) to initialize system views, macros, triggers
and users, and the error messages tables. Refer to the software release cover letter for
information on running DIP.

During an Archive Operation

Restarting an archive operation causes Teradata ARC to:

• Reposition the output archive file at the data block indicated in the last restart point
recorded in the restart log before the failure occurred.

• Restart the operation at the beginning of the last table or secondary index subtable that
was being archived before the failure. Teradata ARC performs this step only if the AMP
configuration has changed, that is, if any of the AMPs are online before the failure but
online after the failure.

In the case of an interrupted archive of database DBC, resubmit the ARCHIVE statement
without specifying the RESTART parameter.

During a Restore Operation

Restarting a restore operation causes Teradata ARC to:

• Reposition the input archive file at the data block indicated in the last restart point
recorded in the restart log before the failure occurred.

• Restart the operation at the beginning of the last table or secondary index subtable that
was being restored before the failure. Teradata ARC performs this step only if the AMP
configuration has changed, that is, if any of the AMPs are online before the failure but
online after the failure.

During a Recovery Operation

Restarting a recovery (rollback or rollforward) operation causes Teradata ARC to:

• Resubmit the original recovery request to the Teradata Database.

• Reinitiate the complete recovery action.

The Teradata Database reads the entire input journal subtable and ignores recovery actions for
change images already used.

Restart After Client or Teradata ARC Failure

If your client system or Teradata ARC fails during an archive, restore, or recovery procedure,
you can restart the operation. Teradata ARC responds to the failure by logging all its sessions

Chapter 7: Restarting Teradata ARC
Restart After Client or Teradata ARC Failure

Teradata Archive/Recovery Utility Reference 215

off the Teradata Database. Because the Teradata Database does not journal Teradata ARC
statements, Teradata ARC takes no recovery action at logoff. Database locks placed by a utility
statement on databases or tables remain intact following a failure.

You can restart a utility operation automatically if you specify the RESTART runtime option
when you invoke Teradata ARC. It uses the restart log to determine the state of the pending
operation. Command execution continues using the copy of the original source statement file.
Teradata ARC reads the restart log to determine its restart point, then reenters the statement
that was being processed at the time of the failure.

If a client or utility failure interrupted an archive or restore of database DBC, you cannot
restart the operation.

If an archive or restore of multiple databases including database DBC is interrupted, you must
resubmit the ARCHIVE statement, but you can also specify the RESTART option.

Restarting an Archive Operation

Restarting an archive operation causes Teradata ARC to:

• Reposition the output archive file at the data block indicated in the last restart point
recorded in the restart log before the failure occurred.

• If the AMP configuration changed (AMPs were online before the failure but offline
afterward), restart begins with the last table being archived before the failure.

Examples

The following examples show the restart of an all-AMPs archive on VM and MVS.

Note: The RESTART parameter has been added to the EXEC.

Restarting an Archive on VM

/* Minimal EXEC to run ARCMAIN */
address command

'GLOBAL LOADLIB LSCRTL'
'GLOBAL TXTLIB CLI'
'SET LDRTBLS 10'
'CP SET TIMER REAL'
'FILEDEF DBCLOG DISK DBCLOG LOGFILE A (RECFM F LRECL 32760'
'FILEDEF DUMP100 TAP1 SL (BLKSIZE 32760 RECFM U DEN 6250'
'LABELDEF DUMP100 VOLID 000100 VOLSEQ 0001 SEC 0'
'ARCMAIN <ARC.CNTL.A RESTART'

The SYSIN control file, ARC CNTL on the CMS A-disk, contains the following:

LOGON DBC,DBC;
DUMP DATA TABLES (DBC) ALL,

RELEASE LOCK,
INDEXES,
FILE=DUMP100;

LOGOFF;

The files ARCMAIN MODULE, CLI TXTLIB, and LSCRTL LOADLIB must be on minidisks
or SFS directories that are ACCESS’ed from the CMS virtual machine. The latter two files are
the CLIv2 and SAS/C runtime libraries, respectively.

Chapter 7: Restarting Teradata ARC
Restart After Client or Teradata ARC Failure

216 Teradata Archive/Recovery Utility Reference

Restarting an Archive on MVS

//DBCDMP1 JOB 1,’DBC OPERATIONS’,REGION=2048K,MSGCLASS=A //DUMP
EXEC PGM=ARCMAIN,PARM=’RESTART’
//STEPLIB DD DSN=DBC.AUTHLOAD,DISP=SHR
// DD DSN=DBC.TRLOAD,DISP=SHR
//DBCLOG DD DSN=DBC.ARCLOG.DATA,DISP=OLD
//DUMP100 DD DISP=OLD,DSN=DBC.DUMP100
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,BLKSIZE=132,LRECL=132)
//SYSUDUMP DD SYSOUT=*
//SYSIN DD DATA,DLM=##
LOGON DBC,DBC;
ARCHIVE DATA TABLES (DBC) ALL,

RELEASE LOCK,
INDEXES,
FILE=DUMP100;

LOGOFF;
##

In this example, the tape with VOLSER=DGJA is mounted at the time that Teradata ARC
abends.

Note: When archiving on tape for MVS, specify the tape level information and all tape volume
serial numbers, including the one mounted at the time of the abend.

Restarting a Restore Operation

Restarting a restore operation causes Teradata ARC to:

• Reposition the input archive file at the data block indicated in the last restart point
recorded in the restart log before the failure occurred.

• If the AMP configuration changed (AMPs are online before the failure but offline
afterward), restart begins with the last table being restored before the failure.

If a restore of database DBC is interrupted for any reason, perform the entire restoration
again, including re-initializing the Teradata Database. Even if the Teradata Database was
initialized prior to database DBC restore, you must initialize it again.

If archive of database DBC is interrupted, resubmit the ARCHIVE statement without
specifying the RESTART option.

Examples

• For VM, add the RESTART parameter on the command line, which invokes ARCMAIN.
The SYSIN control file is read from the restart log on restart.

• For MVS, the only difference between the original job and the restarted job is to add the
RESTART parameter to the PARM statement of the EXEC.

Restarting a Restore on VM

/* Minimal EXEC to run ARCMAIN */
trace off
address cms
“GLOBAL LOADLIB LSCRTL”
“GLOBAL TXTLIB CLI”
“CP SET TIMER REAL”
“FILEDEF DBCLOG DISK DBCLOG LOGFILE A (RECFM F LRECL 32760”

Chapter 7: Restarting Teradata ARC
Restart After a Teradata Database Failure

Teradata Archive/Recovery Utility Reference 217

“FILEDEF DUMP100 TAP1 SL (BLKSIZE 32760 RECFM U DEN 6250"
“LABELDEF DUMP100 VOLID 000100 VOLSEQ 0001 SEC 0"
“ARCMAIN <ARC.CNTL RESTART”

The SYSIN control data set, ARC CNTL A, contains the following:

LOGON DBC,DBC;
RESTORE DATA TABLES (PERSONNEL) ALL,

RELEASE LOCK,
FILE=DUMP100;

LOGOFF;

Restarting a Restore on MVS

//DBCRST1 JOB 1,’DBC OPERATIONS’,REGION=2048K,MSGCLASS=A
//RESTORE EXEC PGM=ARCMAIN,PARM=’RESTART’
//STEPLIB DD DSN=DBC.AUTHLOAD,DISP=SHR
// DD DSN=DBC.TRLOAD,DISP=SHR
//DBCLOG DD DSN=DBC.ARCLOG.DATA,DISP=OLD
//DUMP100 DD DSN=DBC.DUMP100,DISP=OLD
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,BLKSIZE=132,LRECL=132)
//SYSIN DD DATA,DLM=##
LOGON DBC,DBC;
RESTORE DATA TABLES (PERSONNEL) ALL,

RELEASE LOCK,
FILE=DUMP100;

LOGOFF;
##

Restarting a Checkpoint Operation

When the CHECKPOINT statement writes rows to a journal, the transient journal also keeps
a record of these rows. Consequently, if the client or Teradata ARC fails, the results of the
checkpoint operation are rolled back by the transient journal.

• If a Teradata ARC statement specified checkpoints on multiple journal tables, Teradata
ARC rolls back only the checkpoint being taken at the time of the client or utility failure.

• If a CHECKPOINT statement terminates abnormally, all locks placed by Teradata ARC are
removed.

When Teradata ARC restarts, the CHECKPOINT statement completes.

Restart After a Teradata Database Failure

If the Teradata Database fails during an archive, restore or recovery procedure, you can restart
the operation. After a failure and restart, sessions remain intact and Teradata ARC continues
processing with the statement that was being executed at the time of the failure.

Restarting an Archive Operation

Restarting an archive operation causes Teradata ARC to:

• Reposition the output archive file at the data block indicated in the last restart point
recorded in the restart log before the failure occurred.

Chapter 7: Restarting Teradata ARC
Restart After a Teradata Database Failure

218 Teradata Archive/Recovery Utility Reference

• If the AMP configuration changed (AMPs are online before the failure but offline
afterward), restart begins with the last table being archived before the failure.

If the Teradata Database fails during an archive of database DBC, Teradata ARC’s default
action is to wait for the Teradata Database to come back online and then try the archive
operation again. Some options (for example, ABORT, HALT, and PAUSE) can affect whether
Teradata ARC stops, but the default is to try again after the system recovers.

Restarting a Restore Operation

Restarting an restore operation causes Teradata ARC to:

• Reposition the input archive file at the data block indicated in the last restart point
recorded in the restart log before the failure occurred.

• If the AMP configuration changed (AMPs are online before the failure but offline
afterward), restart begins with the last table being archived before the failure.

If the failure occurred during a restore of database DBC, repeat the entire restore operation,
including re-initializing the Teradata Database. Some options (for example, ABORT, HALT,
and PAUSE) can affect whether Teradata ARC stops, but the default is to try again after the
system recovers.

Restarting a Recovery Operation

Restarting a recovery (rollback or rollforward) operation causes Teradata ARC to:

• Resubmit the original recovery request to the Teradata Database.

• Reinitiate the complete recovery action.

The Teradata Database reads the entire input journal subtable, ignoring recovery actions for
change images already processed.

Restarting a Checkpoint Operation

When the CHECKPOINT statement writes rows to a journal, the transient journal also keeps
a record of these rows. Consequently, if the Teradata Database fails, the results of the
checkpoint operation are rolled back by the transient journal.

• If Teradata ARC statement specified checkpoints on multiple journal tables, Teradata ARC
rolls back only the checkpoint being taken at the time of the hardware failure.

• If a CHECKPOINT statement terminates abnormally, all locks Teradata ARC placed are
removed.

When Teradata ARC restarts, the CHECKPOINT statement completes.

Removing HUT Locks After a Restart

Teradata ARC places HUT locks on tables and databases to prevent modifications to the tables
and databases before you can restart the job. consequently, when a Teradata ARC operation
does not finish, HUT locks might remain on tables and databases.

Chapter 7: Restarting Teradata ARC
Recovery Control Catalog

Teradata Archive/Recovery Utility Reference 219

Occasionally, you might decide that you cannot restart a job for some reason. In this case, you
can specifically remove HUT locks to allow the database or table to be accessed again. To
remove HUT locks:

1 Run a utility statement that specifies the RELEASE LOCK statement for the currently
locked database.

2 Specify a new restart log. (The restart log used when the failure occurred indicates that a
restart is necessary, which prevent the removal of Teradata ARC HUT locks.)

Example

The following example shows the statements needed to release the locks on a database named
Database_Name.

LOGON TDPI/DBC,DBC;
RELEASE LOCK (Database_Name), OVERRIDE;
LOGOFF;

For additional information on the RELEASE LOCK statement and the options available on
this statement, refer to “RELEASE LOCK” on page 185.

Recovery Control Catalog

The Teradata Database maintains a Recovery Control Catalog (RCC) to record all archive and
recovery activity. Use the RCC to monitor restart and recovery activity, or use the
RCVMANAGER utility.

The RCC consists of the following standard tables in the database DBC:

• RCEvent contains a row for each archive and/or recovery activity.

• RCConfiguration contains a row for each archive and/or recovery activity that did not
include all AMPs defined in the hardware configuration.

• RCMedia contains a row for each removable device used in either an archive or recovery
activity.

User DBC must authorize access to these tables for selection and deletion operations. The
Teradata Database automatically generates all inserts to the tables, so remove unnecessary
rows from the table.

Recording Row Activity

Each row in the RCEvent table contains multiple columns. Some of these columns are the
same for all rows and others are optional, depending on the type of event being recorded.

Standard Fields

• Event Number - A unique integer value assigned by the Teradata Database to each
recorded event.

Chapter 7: Restarting Teradata ARC
Recovery Control Catalog

220 Teradata Archive/Recovery Utility Reference

Teradata ARC assigns event numbers in ascending order. For example, events that occur
earlier in time have smaller numbers. The event number (not the date and time stamp) is
the most accurate way to determine the chronology of events.

• Date and Time - The value of the Teradata Database time-of-day clock when the event is
recorded.

Because earlier events can have later time stamps than later events, do not use this value to
determine the chronology of checkpoint events. Instead, use event numbers.

• User Name - Logon ID for the user who initiated the event.

• Event Type - A text string identifying the event. The event types are:

• Database Name - The name of the database affected by the activity. If multiple databases
are affected, a row is recorded for each database.

• Object Type - A single character that defines the type of object involved. The character
values and their meanings are:

• D - total database

• T - data table

• J - journal table

• Object Identifier - A four byte field containing either a database ID or the uniqueness
portion of a table identifier.

This field further defines the object involved in the event. These fields are derived from the
DBASE and TVM dictionary tables and are maintained by the Teradata Database.

• All-AMPs Flag - The value “A” means the following:

• All AMPs

• Rows in RCConfiguration define any offline AMPs

• Rows in RCConfiguration define the list of AMPs involved

• Rows in RCConfiguration define the list of AMPs involved

• Restart Count - If the event is restarted and the online AMP configuration has changed,
this column increases by one.

If the event was completed without a configuration change, this field contains a zero.

• Operation in Progress - This field contains a Y when the Teradata ARC operation
specified is not complete.

Operations that terminate abnormally and are not restarted are left with Y. When the
specified Teradata ARC operation completes, this field contains an N.

Optional Fields

The following are optional fields in the event rows:

• Dataset Name - The client file name specified for an archive or recovery activity.

• BUILD

• CHECKPOINT

• COPY

• DELETE JOURNAL

• DUMP (ARCHIVE)

• RESTORE

• ROLLBACK

• ROLLFORWARD

Chapter 7: Restarting Teradata ARC
Recovery Control Catalog

Teradata Archive/Recovery Utility Reference 221

• Table Name - The table name specified for an archive or recovery activity.

Contains one row for each table affected unless all tables are affected. If all rows are
affected, BTEQ shows a question mark. This indicates a NULL field.

• Checkpoint Name - The label you give to the checkpoint.

• Linking Event Number - The number assigned to some other event that influenced the
current event.

The termination point for a rollback is a linking event number.

• Journal Used - A single character indicating which journal table the event used:

• C - current journal table

• R - restored portion of the journal table

• S - saved portion of the journal table

• Journal Saved - Y or N to indicate that the CHECKPOINT statement did (or did not)
contain the SAVE option.

• Index Present - Y or N to indicate whether the archive included the index option.

• Dup Archive Set - Y or N to indicate if this is a duplicate file created by an archive request.

If two files are created by a single archive request, two event rows are generated. One has
the flag set to Y to indicate that it is a duplicate. The other has a value of N to indicate that
it is the primary copy.

• Lock Mode - A single character to identify the HUT lock that is applied by an archive
operation:

• A - The operation executed under either an access lock or a group read lock.

• R - The operation executed under a read lock.

The RCEvent table also has other fields not listed above, which are reserved for future use.

Recording AMP Information

Teradata ARC inserts rows into the RCConfiguration table for each archive activity that does
not affect all of the AMPs in the configuration:

• If the activity is for all of the AMPs, but some AMPs are offline, Teradata ARC records a
row for each offline AMP.

• If the activity is for specific AMPs, Teradata ARC records a row for each AMP that is both
specified and online.

A row contains these attributes:

• The event number assigned to the activity.

• The logical identifier for the processor.

• The cabinet and slot number for the processor.

• A state flag of D (down) to indicate that a processor was offline during an all-AMPs
operation, or a flag of U to indicate the processor participated in a specific AMPs
operation.

• A restart count to indicate during which restart of the event the row was inserted.

Chapter 7: Restarting Teradata ARC
Recovery Control Catalog

222 Teradata Archive/Recovery Utility Reference

If the Teradata Database fails during an archive or recovery activity and the operation is
restarted and the configuration changes, then Teradata ARC writes rows to the RCEvent and
RCConfiguration tables. The restart count ties these rows together.

Recording Device Information

The utilities insert rows into the RCMedia table for each removable device used in an archive
or recovery activity. A row contains these attributes:

• The event number assigned to the activity.

• The six-character volume serial assigned to the removable device.

• A sequence number that assigns the device its position within the set.

• A duplicate-file flag to indicate the device belongs to a duplicate file created by an archive
request. Y indicates a duplicate; N indicates the primary file.

Teradata Archive/Recovery Utility Reference 223

APPENDIX A

How to Read Syntax Diagrams

This appendix describes the conventions that apply to reading the syntax diagrams used in
this book.

Syntax Diagram Conventions

Notation Conventions

The following table defines the notation used in this section:

Item Definition / Comments

Letter An uppercase or lowercase alphabetic character ranging from A through Z.

Number A digit ranging from 0 through 9.

Do not use commas when entering a number with more than three digits.

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

224 Teradata Archive/Recovery Utility Reference

Paths

The main path along the syntax diagram begins at the left, and proceeds, left to right, to the
vertical bar, which marks the end of the diagram. Paths that do not have an arrow or a vertical
bar only show portions of the syntax.

The only part of a path that reads from right to left is a loop.

Paths that are too long for one line use continuation links. Continuation links are small circles
with letters indicating the beginning and end of a link:

When you see a circled letter in a syntax diagram, go to the corresponding circled letter and
continue.

Word Variables and reserved words.

IF a word is shown in… THEN it represents…

UPPERCASE
LETTERS

a keyword.

Syntax diagrams show all keywords in
uppercase, unless operating system restrictions
require them to be in lowercase.

If a keyword is shown in uppercase, you may
enter it in uppercase or mixed case.

lowercase letters a keyword that you must enter in lowercase,
such as a UNIX command.

lowercase italic letters a variable such as a column or table name.

You must substitute a proper value.

lowercase bold letters a variable that is defined immediately following
the diagram that contains it.

UNDERLINED
LETTERS

the default value.

This applies both to uppercase and to lowercase
words.

Spaces Use one space between items, such as keywords or variables.

Punctuation Enter all punctuation exactly as it appears in the diagram.

Item Definition / Comments

FE0CA002

A

A

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

Teradata Archive/Recovery Utility Reference 225

Required Items

Required items appear on the main path:

If you can choose from more than one item, the choices appear vertically, in a stack. The first
item appears on the main path:

Optional Items

Optional items appear below the main path:

If choosing one of the items is optional, all the choices appear below the main path:

You can choose one of the options, or you can disregard all of the options.

Abbreviations

If a keyword or a reserved word has a valid abbreviation, the unabbreviated form always
appears on the main path. The shortest valid abbreviation appears beneath.

In the above syntax, the following formats are valid:

• SHOW CONTROLS

• SHOW CONTROL

Loops

A loop is an entry or a group of entries that you can repeat one or more times. Syntax
diagrams show loops as a return path above the main path, over the item or items that you can
repeat.

FE0CA003

SHOW

FE0CA005

SHOW

VERSIONS

CONTROLS

FE0CA004

SHOW

CONTROLS

FE0CA006

SHOW

CONTROLS

VERSIONS

FE0CA042

SHOW

CONTROL

CONTROLS

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

226 Teradata Archive/Recovery Utility Reference

The following rules apply to loops:

Excerpts

Sometimes a piece of a syntax phrase is too large to fit into the diagram. Such a phrase is
indicated by a break in the path, marked by | terminators on either side of the break. A name
for the excerpted piece appears between the break marks in boldface type.

The named phrase appears immediately after the complete diagram, as illustrated by the
following example.

If… Then…

there is a maximum number of entries
allowed

the number appears in a circle on the return path.

In the example, you may enter cname a maximum
of 4 times.

there is a minimum number of entries
required

the number appears in a square on the return path.

In the example, you must enter at least 3 groups of
column names.

a separator character is required
between entries

the character appears on the return path.

If the diagram does not show a separator character,
use one blank space.

In the example, the separator character is a comma.

a delimiter character is required
around entries

the beginning and end characters appear outside the
return path.

Generally, a space is not needed between delimiter
characters and entries.

In the example, the delimiter characters are the left
and right parentheses.

JC01B012

(

, 4

cname)

, 3

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

Teradata Archive/Recovery Utility Reference 227

LOCKING excerpt

where_cond

A

cname

excerpt

JC01A014

A

HAVING con

,

col_pos

,

Appendix A: How to Read Syntax Diagrams
Syntax Diagram Conventions

228 Teradata Archive/Recovery Utility Reference

Teradata Archive/Recovery Utility Reference 229

APPENDIX B

Multivolume CMS Tape Support

Conversational Monitor System (CMS) tape messages are routed to the host system operator.

CMS Tape Support Messages

 To support multivolume tape support under CMS, messages are generated when Teradata
ARC runs under CMS with tape input or output.

Messages are divided into two groups:

• Messages routed to the host system operator

• Messages routed to the console of the virtual machine that is running Teradata ARC

Table 16 gives a brief description of each message that is routed to the host system operator.

Table 16: Messages Routed to System Operator

Message Description

DDNAME: XXXXXXXX, BAD FILE
SEQUENCE XXX, MUST BE 1

An invalid file sequence number is specified when
file sequence number 1 was expected.

DDNAME: XXXXXXXX NOT DEFINED The ddname in the LABELDEF statement is not
defined in the FILEDEF statement.

EXPIRATION DATE NOT EXPIRED The expiration date in the LABELDEF is not
reached.

FIRST VOLSER INVALID: XXXXXX,
SHOULD BE XXXXXX

The incorrect volume 1 tape is mounted. The
message also displays the volume ID of the tape that
is mounted and the volume ID of the tape that
should be mounted.

MISSING LABELDEF FOR SL TAPE FILE:
XXXXXXXX

The LABELDEF for the ddname is missing.

PLEASE MOUNT VOL XXXXXX ON XXX,
XXX, RING XXX FOR DDNAME XXXXXXXX
VOLSEQ XXX

The program is ready for the first tape in the dump
or RESTORE operation.

RECORD XXXXXX NOT FOUND ON VOL
XXXXXX SEQ XXX

The requested record is not found.

TAP1(181) IS NOT DEFINED, ATTACH
TAPE DRIVE AND RETRY

No device is defined for address x’181’.

This message is routed to the console of the virtual
machine that is running Teradata ARC.

Appendix B: Multivolume CMS Tape Support
CMS Tape Support Messages

230 Teradata Archive/Recovery Utility Reference

TAPE MOUNTED IS NL--SL REQUESTED A tape without a label is mounted but a standard
label is requested.

TAPE MOUNTED IS SL--NL REQUESTED A standard label tape is mounted but a tape without
a label is requested.

TAPE ON XXX IS FILE PROTECTED An attempt is made to write on a tape that is
write-protected.

TAPE ON XXX IS XXXXXX, XXX, SEQ
XXX

The tape that is mounted is the correct tape.

TAPE: XXXXXX, WRONG DSNAME:
XXXXXXXXXXXXXXXXX

The incorrect data set name is being read for the
specified volume.

VOLUME: XXXXXX HDR1 LABEL MISSING
OR INVALID

HDR1 information in the LABELDEF statement is
missing or does not match the information on the
tape.

VOL XXXXXX IS SEQUENCE XXX, XXX
REQUESTED

An invalid volume sequence is mounted instead of
the one that was requested.

WRONG VOLUME: XXXXXX MOUNTED The wrong volume is mounted. This message also
displays the volume ID of the tape that is mounted.

XXXXXX FILE: XXXXXXXX VOL SEQ IS
XXX MUST BE 1

An invalid volume sequence number is specified
when volume sequence number 1 was expected.

Table 16: Messages Routed to System Operator (continued)

Message Description

Teradata Archive/Recovery Utility Reference 231

Glossary

A

access lock The requestor is willing to accept minor inconsistencies of the data while
accessing the database (an approximation is sufficient).

An access lock permits modifications on the underlying data while the SELECT operation is in
progress.

access module processor (AMP) A virtual processor that receives steps from a parsing
engine (PE) and performs database functions to retrieve or update data. Each AMP is
associated with one virtual disk, where the data is stored. An AMP manages only its own
virtual disk and not the virtual disk of any other AMP.

AMP See access module processor (AMP).

AP Application Processor

APRC application Processor Reset Containment

ARC Teradata’s Archive/Recovery Utility

B

BTEQ Basic Teradata Query

C

Call-Level Interface (CLI) A programming interface designed to support SQL access to
databases from shrink-wrapped application programs. SQL/CLI provides and international
standard implementation-independent CLI to access SQL databases. Client-server tools can
easily access database through dynamic link libraries. It supports and encourages a rich set of
client-server tools.

conditional expression A user-provided expression needed for a selected partitions
operation. A conditional expression specifies which rows or partitions the operation applies
to. With PARTITIONS WHERE, the expression is matched against the partitioning expression
defined on the specified table. If the range of valid values for a partition overlaps the range of
values that match the conditional expression, then the entire partition is selected; otherwise,
the entire partition is ignored. The partition does not necessarily need to contain a row that
matches the conditional expression in order to be selected. With LOG WHERE, the expression
is matched against individual rows; any row that matches the conditional expression (but is
not restored to the target table) is inserted into the error table.

CMI Conversational Monitor System

Glossary

232 Teradata Archive/Recovery Utility Reference

D

database A related set of tables that share a common space allocation and owner. A
collection of objects that provide a logical grouping for information. The objects include,
tables, views, macros, triggers, and stored procedures.

DBC Database computer

DIP Database DBC Initialization Procedure

E

exclusive lock The requester has exclusive rights to the locked resource. No other process
can read from, write to, or access the locked resource in any way.

G

GUI Graphical user interface

I

IFP Interface Processor

I/O Input/output

J

JCL Job Control Language

join A select operation that combines information from two or more tables to produce a
result.

K

KB Kilobytes

L

LOB Large object

log A record of events. A file that records events. Many programs produce log files. Often
you will look at a log file to determine what is happening when problems occur. Log files have
the extension “.log”.

M

MVS Multiple virtual storage

Glossary

Teradata Archive/Recovery Utility Reference 233

O

Open Database Connectivity (ODBC) Under ODBC, drivers are used to connect
applications with databases. The ODBC driver processes ODBC calls from an application, but
passes SQL requests to the Teradata Database for processing.

P

partitioning expression The expression defined in the table definition for a table with a
partitioned primary index (PPI) that specifies how the data for the table is to be partitioned.

PDE Parallel Database Extension

PE Parsing Engine

PPI Partitioned Primary Index

R

RCC Recovery Control Catalog

read lock Several users can hold read locks on a resource, during which time the system
permits no modification of that resource.

Read locks ensure consistency during read operations such as those that occur during a
SELECT statement.

Relational Database Management System (RDBMS) A database management system in
which complex data structures are represented as simple two-dimensional tables consisting of
columns and rows. For Teradata SET, RDBMS is referred to as “Teradata Database.”

S

SMP Symmetric Multi-Processing

SQL See Structured Query Language (SQL).

Structured Query Language (SQL) The initials, SQL, are pronounced either see-kwell or as
separate letters. SQL is a standardized query language for requesting information from a
database. SQL consists of a set of facilities for defining, manipulating, and controlling data in
a relational database.

T

table A two-dimensional structure made up of one or more columns with zero or more
rows that consist of fields of related information. See also database.

TDP Teradata Director Program

Glossary

234 Teradata Archive/Recovery Utility Reference

U

UDF User-defined function. By providing a mechanism that supports the creation of SQL
functions, scalar and aggregate UDFs allow users to add their own extensions to Teradata
Database SQL. These functions can be used to operate on any Teradata Database data type and
can be utilized wherever built-in functions are used. If a function doesn’t exist to perform a
specific task or algorithm, you can write one that does. UDFs can also simplify complex SQL
syntax.

UDT User-defined type. UDTs introduce object-oriented technology to SQL. Users can
define custom data types that model the structures and behaviors of the data in their
applications.

V

VM virtual Machine

W

write lock The requester has exclusive rights to the locked resource, except for readers not
concerned with data consistency.

Teradata Archive/Recovery Utility Reference 235

Index

Symbols
$ARC

database added by LOGSKIPPED 108
default database 79

* character
ANALYZE statement 135

A
ABORT keyword

ARCHIVE statement 139, 144
BUILD statement 151
COPY statement 157
RESTORE statement 190
ROLLBACK statement 206, 207
ROLLFORWARD statement 209, 211

access privileges
ARCHIVE statement 140
BUILD statement 151
CHECKPOINT statement 153
COPY statement 158
DELETE JOURNAL statement 171
RELEASE LOCK statement 186
RESTORE statement 191
REVALIDATE REFERENCES FOR statement 203
ROLLBACK statement 206
ROLLFORWARD statement 209

AccessRights table 25
accid parameter

LOGON statement 183
AccLogRuleTbl table 25
Accounts table 25
ALL FROM ARCHIVE keywords

COPY statement 156, 163
RESTORE statement 189, 200

ALL keyword
ANALYZE statement 135
ARCHIVE statement 138
BUILD statement 150, 151
CHECKPOINT statement 152
COPY statement 156
DELETE DATABASE statement 168
DELETE JOURNAL statement 170
RELEASE LOCK statement 185, 186
RESTORE statement 189, 190
REVALIDATE REFERENCES FOR statement 202
ROLLBACK statement 205, 206

ROLLFORWARD statement 208, 209
ALL PARTITIONS

potential risks 33
all-amp archives

selected partitions 146
all-amps restore

selected partitions 43
AMP keyword

ARCHIVE statement 139, 142
COPY statement 163
RESTORE statement 190, 198

AMPs
all, restoring 46
archive configuration 28
offline

archives 36
checkpoints 69

one offline, restoring 48
recovering specific 54
recovering while offline 53
restoring after reconfiguration 51
restoring offline 48
restoring specific 52
restoring with all AMPS online 46

ANALYZE statement
* character 135
ALL keyword 135
CATALOG keyword 135
character set support 136
DISPLAY keyword 135
FILE keyword 135
kanji support 136
LONG keyword 135
VALIDATE keyword 135

APPLY TO keywords
COPY statement 157, 162

ARC
return codes 127
terminology 54

ARC scripts
samples 22

ARC, Kanji support. See Kanji
ARCDFLT

about defaults 21
ARCDFLT environment variable 71, 72
ARCENV

about defaults 21

Index

236 Teradata Archive/Recovery Utility Reference

ARCENV environment variable 71, 73
ARCENVX

about defaults 21
ARCENVX environment variable 71, 73
archive

AMPs 28
cluster archive 35
databases 28
dictionary archive
general characteristics 28
large objects 37
locks during archive of selected partitions 30
nonhashed tables 37
offline AMPs 36
online 38
potential risks for selected partitions 33
procedure for selected partitions 31
sample script 22
selected partitions of PPI tables 30
tables 28

ARCHIVE statement
ABORT keyword 139, 144
access privileges 140
ALL keyword 138
AMP keyword 139, 142
CATALOG operations 80
CLUSTER/CLUSTERS keyword 139, 142
DATA TABLE/TABLES keywords 138
DICTIONARY TABLE/TABLES keywords 138
EXCLUDE keyword 138
EXCLUDE TABLE/TABLES 138, 157, 190
FILE keyword 140
GROUP keyword 140, 144
INDEXES keyword 139, 144
JOURNAL TABLE/TABLES keywords 138
NO FALLBACK TABLE/TABLES keywords 138
NONEMPTY DATABASE/DATABASES keywords 140,

145
referential integrity 142
RELEASE LOCK keywords 139
USE GROUP READ/USE GROUP READ LOCKS

keywords 140
ARCMAIN

defined 17
required files for 17
starting

from MVS 18
from VM 19, 85
from Windows 20

starting Teradata ARC 16
ARCMAIN statements

ARCHIVE 137
BUILD 150
CHECKPOINT 152

COPY 155
DELETE DATABASE 168
DELETE JOURNAL 170
LOGOFF 182
LOGON 183
RELEASE LOCK 185
RESTORE 188
REVALIDATE REFERENCES FOR 202
ROLLBACK 204, 205
ROLLFORWARD 208

B
BACKUP NOT DOWN keywords

RELEASE LOCK statement 186, 187
batch mode 16
BUILD DATA TABLES operation 49
BUILD statement

ABORT keyword 151
access privileges 151
ALL keyword 150, 151
DATA TABLE/TABLES keywords 150
EXCLUDE keyword 150
JOURNAL TABLES keywords 150
NO FALLBACK TABLE/TABLES keywords 150
RELEASE LOCK keywords 151

C
cancel operation 22
CATALOG

creating multiple tables 80
default database 79
primary index in 80

CATALOG keyword
ANALYZE statement 135

CATALOG runtime parameter
defined 75
syntax 78

change images
restored 48

character set support
ANALYZE statement 136
COPY statement 166

character set, establishing 84
CHARSETNAME runtime parameter

defined 75
syntax 83

CHECKPOINT runtime parameter
defined 75
syntax 88

CHECKPOINT statement
access privileges 153
ALL keyword 152
chkptname parameter 153

Index

Teradata Archive/Recovery Utility Reference 237

EXCLUDE keyword 152
NAMED keyword 153, 154
USE ACCESS LOCK keywords 153
USE LOCK keywords 153
USE READ LOCK keywords 153
WITH SAVE keywords 153

CHECKSUM runtime parameter
defined 75
syntax 90

chkptname parameter
CHECKPOINT statement 153
ROLLBACK statement 206, 207
ROLLFORWARD statement 209, 210

cluster archive
NO BUILD option 51
restoring 49

cluster archive. See archive.
CLUSTER/CLUSTERS keyword

ARCHIVE statement 139, 142
COPY statement 163
RELEASE LOCK statement 186
RESTORE statement 190, 199

CMS tape support messages 229
CollationTbl table 25
command-line

saving as config file or variable 20
concurrency control 29
conditional expression

considerations during archive of selected partitions 31
example 31

config file
creating from command-line options 20

copy
database 58
large objects 56
restoring undefined tables 40

COPY statement
ABORT keyword 157
access privileges 158
ALL FROM ARCHIVE keywords 156, 163
ALL keyword 156
AMP keyword 163
APPLY TO keywords 157, 162
character set support 166
CLUSTER/CLUSTERS keyword 163
DATA TABLE/TABLES keywords 156
DBC.DBCAssociation table 160
DICTIONARY TABLE/TABLES keywords 156
examples 56, 159
EXCLUDE keyword 156
FILE keyword 157
FROM keyword 157, 161
HUT locks 160
JOURNAL TABLE/TABLES keywords 156

kanji support 166
macros 160
NO BUILD keywords 157, 163
NO FALLBACK keywords 157, 161
NO FALLBACK TABLE/TABLES keywords 156
NO JOURNAL keywords 157
referential integrity 161
RELEASE LOCK keywords 157
REPLACE CREATOR keywords 157
stored procedures 160
triggers 160
views 160
WITH JOURNAL TABLE keywords 157, 162

CREATE INDEX keyword 40
creating tables for ARCHIVE statements 80
CURRENT keyword

ROLLFORWARD statement 209

D
data dictionary definitions

restoration of 39
data extension modules 23, 172, 174
DATA TABLE/TABLES keywords

ARCHIVE statement 138
BUILD statement 150
COPY statement 156
RESTORE statement 189

database archive. See archive.
database DBC

failed restores 41
restoring 41

database SYSUDTLIB 27
databases

copying 54
DATAENCRYPTION runtime parameter

defined 75
syntax 91

DBase table 25
DBC database. See database DBC.
DBC Initialization Procedure (DIP)

during restore with one AMP offline 48
DBC.DBCAssociation table

COPY statement 160
DBCLOG

starting from MVS 18
DBCPFX

starting from MVS 18
DBSERROR command line parameter 129
DEFAULT runtime parameter

defined 75
syntax 93

definition of Teradata ARC 3, 15
DELETE DATABASE statement

Index

238 Teradata Archive/Recovery Utility Reference

ALL keyword 168
EXCLUDE keyword 168

DELETE JOURNAL statement
ALL keyword 170
EXCLUDE keyword 170
RESTORED keyword 170
SAVED keyword 170

DELETE keyword
ROLLBACK statement 206, 207
ROLLFORWARD statement 209, 211

DELETE statement 46
DEMODULE parameter 23, 95
DEPARM parameter 23, 97
dictionary archive. See archive.
DICTIONARY TABLE/TABLES keywords

ARCHIVE statement 138
COPY statement 156
RESTORE statement 189, 198

DISPLAY keyword
ANALYZE statement 135

DROP keyword 40
dropped tables

restoring 41
DUMP

keyword to start on MVS 18
DUMP, See ARCHIVE.

E
ENABLE DATA EXTENSION statement 172, 174
ENABLE ENCRYPTION statement 174
encryption module 174
environment variables

ARCDFLT 71
ARCENV 71
ARCENVX 71
creating from command-line options 20
override priority 21

ERRLOG runtime parameter
defined 76
syntax 99

error tables
characteristics 43

ERRORDB keyword
REVALIDATE REFERENCES FOR statement 203

eventno parameter
ROLLFORWARD statement 209

EXCLUDE keyword
ARCHIVE statement 138
BUILD statement 150
CHECKPOINT statement 152
COPY statement 156
DELETE DATABASE statement 168
DELETE JOURNAL statement 170

RELEASE LOCK statement 185
RESTORE statement 190
REVALIDATE REFERENCES FOR statement 202
ROLLBACK statement 206
ROLLFORWARD statement 208

EXCLUDE TABLE/TABLES keywords
ARCHIVE statement 138, 157, 190

EXCLUDE TABLES 43

F
failed restores 41
fallbacks

cluster archive 49
restoring 48

FATAL runtime parameter
defined 76
syntax 100

FILE keyword
ANALYZE statement 135
ARCHIVE statement 140
COPY statement 157

FILEDEF runtime parameter
defined 76
syntax 101

FROM keyword
COPY statement 157, 161

full-table locks
during archive of selected partitions 30

G
GROUP keyword

ARCHIVE statement 140, 144
group read locks

restoring selected partitions 62

H
HALT runtime parameter

defined 76
syntax 103

hash functions
of archive/restore 40

HELP DATABASE keyword 40
HEX runtime parameter

defined 76
syntax 104

host utility locks. See HUT locks
Hosts table 26
HUT locks

archiving and 61
COPY statement 160
other operations and 64
restoring 63

Index

Teradata Archive/Recovery Utility Reference 239

using 60

I
incremental archives 30
indexes

limitation on archive/restore 40
secondary tables 40
unique secondary 48

INDEXES keyword
ARCHIVE statement 139, 144

insufficient memory
during restore 40
for large tables 40

interactive mode 16
interrupted restores 41
IOMODULE runtime parameter

defined 76
syntax 105

IOPARM runtime parameter
defined 76
syntax 106

J
join indexes

limitation on archive/restore 40
JOURNAL TABLE/TABLES keywords

BUILD statement 150
COPY statement 156
RESTORE statement 189

journal tables
archiving 66, 67
change data location 65
checkpoint operations, controlling 68
creating 65
data location 65
local 67
remote 67
setting up 64
subtable

active 66
restored 66
saved 66

K
kanji

ARC support for 85
kanji support

ANALYZE statement 136
COPY statement 166

keywords
ABORT 144, 207
ALL FROM ARCHIVE 200

AMP 142, 163, 198
APPLY TO 162
BACKUP NOT DOWN 187
CLUSTER 142, 163, 199
DELETE 207, 211
DICTIONARY TABLE 198
FROM 161
GROUP 144
INDEXES 144
NAMED 154
NO BUILD 163, 200
NO FALLBACK 161
NONEMPTY DATABASE 145
PRIMARY DATA 210
RELEASE LOCK 210
RESTORE FALLBACK 199
USE LOCK 153
WITH JOURNAL TABLE 162
WITH SAVE 153

L
large objects (LOBs)

archiving 37
copying 56
restoring 40

limitations
character set 85

Linux RedHat/SuSE support 15
local journaling. See journal tables
locks

during an all-AMP restore 48
in cluster archives 49
in copy operations 56
restoring 63

locks. See HUT locks
locks. See utility locks.
LOG WHERE 43
LOGGING ONLINE ARCHIVE OFF statement 177
LOGGING ONLINE ARCHIVE ON statement 179
logical space 51
LOGOFF statement 182
LOGON runtime parameter

defined 76
syntax 107

LOGON statement
accid parameter 183
password parameter 183
tdpid parameter 183
userid parameter 183

LogonRuleTbl table 26
LOGSKIPPED runtime parameter

defined 76
syntax 108

Index

240 Teradata Archive/Recovery Utility Reference

LONG keyword
ANALYZE statement 135

M
macros

COPY statement 160
migration scripts 41
MODIFY DATABASE statement 41
MODIFY USER statement 41
multiple CATATLOG tables 80
MVS

starting ARCMAIN 18

N
NAMED keyword

CHECKPOINT statement 153, 154
NetBackup

using with Teradata ARC 20
Next table 26
NO BUILD keywords

COPY statement 157, 163
RESTORE statement 190, 200

NO BUILD option 51
NO DELETE keywords

ROLLBACK statement 206
ROLLFORWARD statement 209

NO FALLBACK keywords
COPY statement 157, 161

NO FALLBACK TABLE/TABLES keywords
ARCHIVE statement 138
BUILD statement 150
COPY statement 156
RESTORE statement 189

NO JOURNAL keywords
COPY statement 157

NONEMPTY DATABASE/DATABASES keywords
ARCHIVE statement 140, 145

O
offline AMPs 36
OLDCATALOG parameter 80
OldPasswords table 26
online archiving 38
OUTLOG runtime parameter

defined 76
syntax 109

OVERRIDE keyword
RELEASE LOCK statement 186

overrides
by ARCENV 21

overview 3, 15
Owners table 26

P
Parents table 26
PARM runtime parameter

defined 76
syntax 110

partitioning. See selected partitions.
PARTITIONS BY 43
PARTITIONS WHERE keyword

define rows for archive 146
potential risks 33
restore partitioned data 43

password parameter
LOGON statement 183

PAUSE runtime parameter
defined 77
syntax 113

PERFFILE runtime parameter
defined 77
syntax 114

perm space
affecting restore 51

physical space 51
platforms 15
PPI tables

archiving selected partitions 30
PRIMARY DATA keywords

ROLLBACK statement 207
ROLLFORWARD statement 206, 209, 210

primary index
in CATALOG table 80

product version numbers 3
Profiles table 26

Q
query band 212

R
RCC

RCConfiguration table 26, 221
RCEvent table 26, 219
RCMedia table 26, 222

RCConfiguration table 26, 221
RCEvent table 26, 219
RCMedia table 26, 222
reconfiguration

restoring after 51
recovering

general characteristics 52
offline AMPs 53
specific AMP 54
tables and databases 52

referential integrity

Index

Teradata Archive/Recovery Utility Reference 241

after all-AMPs copy 161
ARCHIVE statement 142
RESTORE statement 194

reinitialization prior to restore 41
RELEASE LOCK keywords

ARCHIVE statement 139
BUILD statement 151
COPY statement 157
RESTORE statement 190
REVALIDATE REFERENCES FOR statement 202
ROLLBACK statement 206
ROLLFORWARD statement 209, 210

RELEASE LOCK statement
access privileges 186
ALL keyword 185, 186
BACKUP NOT DOWN keywords 186, 187
CLUSTER/CLUSTERS keyword 186
EXCLUDE keyword 185
OVERRIDE keyword 186

remote journaling. See journal tables
RENAME keyword 40
RepGroup table 26
REPLACE CREATOR keywords

COPY statement 157
RESTART runtime parameter

defined 77
syntax 116

RESTARTLOG runtime parameter
defined 77
syntax 117

restore
after AMP reconfiguration 51
all databases, example 47
change images 48
cluster archive 49
conditions of 39
considerations before 40
data dictionaries 39
database DBC 41
defined 39
difference in perm space 51
DIP procedure
dropped items 40
dropped tables 41
dropping objects before 41
entire database 40, 42
error tables for selected partitions 43
example for selected partitions 32
EXCLUDE option 47
failed or interrupted 41
fallbacks 48
full database from selected table archive 42
general characteristics 39
large objects 40

locks 39
migration script after 41
NO BUILD option 51
permanent journal tables 41
potential risks for selected partitions 33
sample script 23
selected partitions 42
selected table 42
specific AMP 52
types of 42

restore database DBC 27
restore dropped 41
RESTORE FALLBACK keywords

RESTORE statement 190, 199
RESTORE statement

ABORT keyword 190
access privileges 191
ALL FROM ARCHIVE keywords 189, 200
ALL keyword 189, 190
AMP keyword 190, 198
CLUSTER/CLUSTERS keyword 190, 199
DATA TABLE/TABLES keywords 189
DICTIONARY TABLE/TABLES keywords 189, 198
EXCLUDE keyword 190
JOURNAL TABLE/TABLES keywords 189
NO BUILD keywords 190, 200
NO FALLBACK TABLE/TABLES keywords 189
referential integrity 194
RELEASE LOCK keywords 190
RESTORE FALLBACK keywords 190, 199

RESTORED keyword
DELETE JOURNAL statement 170
ROLLFORWARD statement 209

resume operation. See cancel operation.aborted operation.
See cancel operation.

REVALIDATE REFERENCES FOR statement
access privileges 203
ALL keyword 202
ERRORDB keyword 203
example 204
EXCLUDE keyword 202
RELEASE LOCK keywords 202

RoleGrants table 26
Roles table 26
ROLLBACK statement

ABORT keyword 206, 207
access privileges 206
ALL keyword 205, 206
chkptname parameter 206, 207
DELETE keyword 206, 207
EXCLUDE keyword 206
NO DELETE keywords 206
RELEASE LOCK keywords 206
USE CURRENT JOURNAL keywords 206

Index

242 Teradata Archive/Recovery Utility Reference

USE RESTORED JOURNAL keywords 206
rollforward

cluster archive 49
ROLLFORWARD statement

ABORT keyword 209, 211
access privileges 209
ALL keyword 208, 209
chkptname parameter 209, 210
CURRENT keyword 209
DELETE keyword 209, 211
eventno parameter 209
EXCLUDE keyword 208
NO DELETE keywords 209
PRIMARY DATA keywords 206, 209, 210
RELEASE LOCK keywords 209, 210
RESTORED keyword 209

runtime parameters
CATALOG 78
CHARSETNAME 83
CHECKPOINT 88
CHECKSUM 90
DATAENCRYPTION 91
DEFAULT 93
DEMODULE 95
DEPARM 97
ERRLOG 99
FATAL 100
FILEDEF 101
HALT 103
HEX 104
IOMODULE 105
IOPARM 106
LOGON 107
LOGSKIPPED 108
on MVS systems 75
on VM systems 75
OUTLOG 109
PARM 110
PAUSE 113
PERFFILE 114
RESTART 116
RESTARTLOG 117
SESSIONS 118
specifying order of 75
STARTAMP 120
UEN 101, 121
VERBOSE 122
WORKDIR 126

S
sample scripts

archive 22
restore 23

SAVED keyword
DELETE JOURNAL statement 170

scripts
samples 22

secondary indexes
during a restore without fallback 48

secondary table indexes 40
selected partition archive

procedures 31
selected partitions

all-amps restore 43
archive 30
archiving PPI tables 146
error tables 43
full-table locks 30
group read locks 62
keywords for 146
limitations 146
locks 39
PARTITIONS WHERE keyword 146
potential risks 33
restoring 42
UtilVersion match 40

selected table
restoring 42

session query band 212
SESSIONS runtime parameter

defined 77
syntax 118

SET QUERY_BAND statement 212
SHOW JOIN INDEX keyword 40
SIGILL (illegal signal) 132
SIGINT (interrupt signal) 132
SIGSEGV (segmentation violation signal) 132
SIGTERM (terminate signal) 132
Single Sign-On (SSO) 183, 184
SkippedTables table 108
software releases

supported 3
specifications 16
SQL CREATE keyword 40
SSO (Single Sign-On) 183, 184
STARTAMP runtime parameter

defined 77
syntax 120

starting Teradata ARC 16
statistics

during archive of selected partitions 31
stored procedures

COPY statement 160
supported platforms 15
syntax, how to read 223
SysSecDefaults table 26
system tables 25

Index

Teradata Archive/Recovery Utility Reference 243

system upgrades
before restore 42

T
table indexes 40
table-level exclude

ARCHIVE statement 147
tables

copying 54
dropped during restore 40
insufficient memory 40
nonhashed, archiving 37
permanent journal tables 41
PPI tables 30
recovering 52
restore of undefined 40
restoring tables with fallbacks 48
restoring tables without fallbacks 48
statistics during archive of selected partitions 31

tdpid parameter
LOGON statement 183

Teradata Relational Database Management System. See
Teradata Database

terms used by Teradata ARC 16
Translation table 26
triggers

COPY statement 160
troubleshooting

risks for selected partitions 33

U
UDTCast table 26
UDTInfo table 26
UDTTransform table 26
UEN runtime parameter

defined 77
in a file name 101
syntax 121

undefined tables
restored with COPY 40

UNIX signals
SIGILL 132
SIGINT 132
SIGSEGV 132
SIGTERM 132

upgrade
need for conversion utilities 42
of systems 42

USE ACCESS LOCK keywords
CHECKPOINT statement 153

USE CURRENT JOURNAL keywords
ROLLBACK statement 206

USE GROUP READ keywords

ARCHIVE statement 140
USE GROUP READ LOCKS keywords

ARCHIVE statement 140
USE LOCK keywords

CHECKPOINT statement 153
USE READ LOCK keywords

CHECKPOINT statement 153
USE RESTORED JOURNAL keywords

ROLLBACK statement 206
userid parameter

LOGON statement 183
users

dropped during restore 40
Utility Event Number. See runtime parameters, UEN
utility locks

during restores 39
UtilVersion

matching for selected partitions 40

V
VALIDATE keyword

ANALYZE statement 135
variables

creating from command-line options 20
override priority 21

VERBOSE runtime parameter
defined 77
syntax 122

verifying version number 15
Veritas NetBackup

using with Teradata ARC 20
version numbers 3, 15
views

COPY statement 160
dropped during restore 40

VM
starting ARCMAIN 19

W
Windows

starting ARCMAIN 20
WITH JOURNAL TABLE keywords

COPY statement 157, 162
WITH SAVE keywords

CHECKPOINT statement 153
WORKDIR runtime parameter

defined 77
syntax 126

write locks
during a restore of selected partitions 39

Index

244 Teradata Archive/Recovery Utility Reference

	Preface
	Purpose
	Audience
	Supported Releases
	Prerequisites
	Changes to This Book
	Additional Information

	Table of Contents
	List of Tables
	Chapter 1 Introduction
	What is Teradata ARC?
	Platform Support
	Verifying Teradata ARC Version Number
	Teradata ARC-Specific Terminology
	How Teradata ARC Works
	Starting Teradata ARC
	Uses of Teradata ARC

	What is ARCMAIN?
	Starting ARCMAIN
	Starting ARCMAIN from MVS
	Starting ARCMAIN from VM
	Starting ARCMAIN from Linux, MP-RAS, and Windows 2000/XP/Server 2003

	Canceling Teradata ARC
	Sample Teradata ARC Scripts
	Data Extension Modules

	Chapter 2 Archive/Recovery Operations
	Database DBC
	Restoring

	Database SYSUDTLIB
	Archiving
	Restoring
	Copying
	Deleting

	Archiving Tables and Databases
	Concurrency Control
	Archiving With All AMPs Online
	Archiving by Cluster
	Archiving With Offline AMPs
	Archiving Large Objects (LOBs)
	Archiving Non-Hashed and Partially Loaded Tables
	Encrypting Archived Data

	Archiving Online
	Determining Whether Online Archive Logging is in Use

	Restoring Tables and Databases
	Conditions Needed for a Restore Operation
	Considerations Before Restoring Data
	Restoring the Database DBC
	Restoring a User Database or Table
	Restoring With All AMPs Online
	Restoring with a Specific-AMP Archive
	Restoring Using the EXCLUDE Option
	Restoring With AMPs Offline
	Restoring With One AMP Offline
	Restoring Cluster Archives
	Restoring After a Reconfiguration
	Restoring with a Larger Number of AMPs
	Restoring a Specific AMP
	Restoring Encrypted Data from an Archive File

	Recovering Tables and Databases
	Recovering With Offline AMPs
	Recovering a Specific AMP

	Copying Tables and Databases
	Copy vs. Restore
	Conditions for Using the COPY Statement
	COPY Examples
	Copying Encrypted Data from an Archive File

	Using Host Utility Locks
	Transaction vs. Utility Locks
	Teradata ARC Locks During an Archive Operation
	Teradata ARC Locks During a Restore Operation
	Locks Associated with Other Operations

	Setting Up Journal Tables
	Location of Change Data
	Local Journaling
	Archiving Journal Tables
	Journal Impact on Recovery

	Controlling Journal Checkpoint Operations
	Checkpoint Names
	Submitting a CHECKPOINT Statement
	Checkpoint and Locks
	Completing a Checkpoint With Offline AMPs

	Chapter 3 Environment Variables
	ARCDFLT
	ARCENV and ARCENVX

	Chapter 4 Runtime Parameters
	CATALOG
	Automatic Activation of CATALOG
	The CATALOG Table
	CATALOG Operations
	Dictionary Archive

	CHARSETNAME
	Available Character Sets
	Establishing a Character Set
	Character Set Limitations
	Troubleshooting Character Set Use
	Sample JCL

	CHECKPOINT
	Setting CHECKPOINT to 0

	CHECKSUM
	DATAENCRYPTION
	DBSERROR
	DEFAULT
	Default Configuration File

	DEMODULE
	DEPARM
	ERRLOG
	FATAL
	FILEDEF
	HALT
	HEX
	IOMODULE
	IOPARM
	LOGON
	LOGSKIPPED
	OUTLOG
	PARM
	JCL for the Above Example
	Sample Output

	PAUSE
	PERFFILE
	RESTART
	RESTARTLOG
	SESSIONS
	STARTAMP
	UEN (Utility Event Number)
	Function

	VERBOSE
	WORKDIR

	Chapter 5 Return Codes and UNIX Signals
	Return Codes
	UNIX Signals

	Chapter 6 Archive/Recovery Control Language
	ANALYZE
	Alternate Character Set Support

	ARCHIVE
	Access Privileges
	Archiving Process
	Using Keywords with ARCHIVE
	Archiving Selected Partitions of PPI Tables
	Table-Level Exclude Option with ARCHIVE

	BUILD
	Access Privileges

	CHECKPOINT
	Access Privileges
	Usage Notes

	COPY
	Access Privileges
	Usage Notes
	Using Keywords with COPY
	Copying Partitioned Data
	Alternate Character Set Support

	DELETE DATABASE
	Deleting All Objects from the Teradata Database

	DELETE JOURNAL
	Access Privileges
	Usage Notes

	ENABLE DATA EXTENSION
	ENABLE ENCRYPTION
	LOGDATA
	LOGGING ONLINE ARCHIVE OFF
	LOGGING ONLINE ARCHIVE ON
	Access Privileges
	Disallowed Tables

	LOGMECH
	LOGOFF
	LOGON
	RELEASE LOCK
	Access Privileges
	Usage Notes

	RESTORE
	Access Privileges
	Usage Notes
	Restores of Selected Partitions
	Using Keywords with RESTORE

	REVALIDATE REFERENCES FOR
	Access Privileges
	Usage Notes

	ROLLBACK
	Access Privileges
	Usage Notes

	ROLLFORWARD
	Access Privileges
	Usage Notes

	SET QUERY_BAND

	Chapter 7 Restarting Teradata ARC
	Restart Log
	Restarting Teradata ARC
	During a Database DBC Operation
	During an Archive Operation
	During a Restore Operation
	During a Recovery Operation

	Restart After Client or Teradata ARC Failure
	Restarting an Archive Operation
	Restarting a Restore Operation
	Restarting a Checkpoint Operation

	Restart After a Teradata Database Failure
	Restarting an Archive Operation
	Restarting a Restore Operation
	Restarting a Recovery Operation
	Restarting a Checkpoint Operation
	Removing HUT Locks After a Restart

	Recovery Control Catalog
	Recording Row Activity
	Recording AMP Information
	Recording Device Information

	Appendix A How to Read Syntax Diagrams
	Syntax Diagram Conventions
	Notation Conventions
	Paths
	Required Items
	Optional Items
	Abbreviations
	Loops
	Excerpts

	Appendix B Multivolume CMS Tape Support
	CMS Tape Support Messages

	Glossary
	Index

